Abstract:The effect of two basic topological defects, mitosis and the Stone-Wales defect, is studied in the graphene structure. The topological rules of the curvatures due to the occurrence of the defects in different arrangements are determined. Despite the fact that the causes and the probability of these topological defects are not known today, this theoretical work studies the distortions caused by the defects geometry and stability of the graphene structure.
The aim of the research work is to study the physical, mechanical, and erosive wear properties of sugarcane bagasse fiber-reinforced epoxy composites. The physical (density, void content) and the mechanical (hardness, tensile strength, impact energy, flexural strength) properties of the composites were found to increase with the content of bagasse fiber. For erosive wear analysis, the experiments were carried out with the help of erosion test machine. To minimize the erosive wear rate, Taguchi technique is executed to explore the influence of five control factors including fiber content, impact velocity, impingement, stand-off distance, and erodent size at three levels. Using Taguchi (L 27 ) orthogonal array, the optimal combination of control factors, which yielded minimum erosive wear rate, was statistically predicted and experimentally verified. The fiber content and impact velocity were the two most contributing control factors for the minimization of erosive wear rate. The important sequence of the parameters is fiber content > impact velocity > impingement angle > erodent size > stand-off distance. The optimal combination of control factors was obtained at 10 wt% of fiber content, 30 m/s of impact velocity, 30 of impingement angle, 85 mm of stand-off distance, and 250 μm of erodent size. Finally, composites worn surfaces were examined with scanning electron microscope to study the possible erosive wear mechanism. POLYM. COMPOS., 40:3777-3786, 2019.
In this work we demonstrate that carbon nanotube junctions with an optional number, type (zigzag and/or armchair) and diameter of tubes can exist. We show a method for geometric construction of their models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.