A robust embedded ladder-oxide (k ¼ 2:9)/copper (Cu) multilevel interconnect is demonstrated for 0.13 mm complementary metal oxide semiconductor (CMOS) generation. A stable ladder-oxide intermetal dielectric (IMD) is integrated by the Cu metallization with a minimum wiring pitch of 0.34 mm, and a single damascene (S/D) Cu-plug structure is applied. An 18% reduction in wiring capacitance is obtained compared with that in SiO 2 IMDs. The superior controllability of metal thickness by the S/D process enables us to enhance the MPU maximum frequency easily. The stress-migration lifetime of vias on wide metals for the S/D Cu-plug structure is longer than that for a dual damascene (D/D) structure. Reliability test results such as electromigration (EM), the temperature dependant dielectric breakdown (TDDB) of Cu interconnects, and pressure cooker test (PCT) results are acceptable. Moreover, a high flexibility in a thermal design is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.