The problem of leak detection in water pipeline network can be solved by utilizing a wireless sensor network based an intelligent algorithm. A new novel denoising process is proposed in this work. A comparison study is established to evaluate the novel denoising method using many performance indices. Hardyrectified thresholding with universal threshold selection rule shows the best obtained results among the utilized thresholding methods in the work with Enhanced signal to noise ratio (SNR) = 10.38 and normalized mean squared error (NMSE) = 0.1344. Machine learning methods are used to create models that simulate a pipeline leak detection system. A combined feature vector is utilized using wavelet and statistical factors to improve the proposed system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.