Vehicular ad-hoc networks allow vehicles to exchange messages pertaining to safety and road efficiency. Building trust between nodes can, therefore, protect vehicular ad-hoc networks from malicious nodes and eliminate fake messages. Although there are several trust models already exist, many schemes suffer from varied limitations. For example, many schemes rely on information provided by other peers or central authorities, for example, roadside units and reputation management centers to ensure message reliability and build nodes’ reputation. Also, none of the proposed schemes operate in different environments, for example, urban and rural. To overcome these limitations, we propose a novel trust management scheme for self-organized vehicular ad-hoc networks. The scheme is based on a crediting technique and does not rely on other peers or central authorities which distinguishes it as an economical solution. Moreover, it is hybrid, in the sense it is data-based and entity-based which makes it capable of revoking malicious nodes and discarding fake messages. Furthermore, it operates in a dual-mode (urban and rural). The simulation has been performed utilizing Veins, an open-source framework along with OMNeT++, a network simulator, and SUMO, a traffic simulator. The scheme has been tested with two trust models (urban and rural). The simulation results prove the performance and security efficacy of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.