This paper presents an improved hybrid micro-grid load frequency control scheme for an autonomous system. The micro-grid system comprises of renewable and non-renewable energy-based Power Generating Units (PGU) which consist of Solar Photovoltaic, WT Generator, Solar Thermal Power Generator, Diesel Engine Generator, Fuel Cell (FC) with Aqua Electrolizer (AE). However, power produce from renewable sources in microgrid are intermittent in supply, hence make it difficult to maintain power balance between generated power and demand. Therefore, Battery energy storage system, ultra-capacitor and flywheel energy storage systems make up the energy storage units. These separate units are selected and combined to form two different scenarios in this study. This approach mitigates frequency fluctuations during disturbances (sudden load changes) by ensuring balance between the generated power and demand. For each scenario, Moth flame optimization algorithm optimized Proportional-Integral controllers were utilized to control the micro-grid (to minimize fluctuations from the output power of the non-dispatchable sources and from sudden load change). The results of the developed scheme were compared with that of Quasi-Oppositional Harmony Search Algorithm for overshoot and settling time of the frequency deviation. From the results obtained, the proposed scheme outperformed that of the quasi-oppositional harmony search algorithm optimized controller by an average percentage improvement of 35.95% and 28.76% in the case of overshoot and settling time when the system step input was suddenly increased. All modelling analysis were carried out in MATLAB R2019b environment. Keywords—Frequency Deviation, Micro-grid, Moth flame optimization algorithm, Quasi-Oppositional Harmony Search Algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.