A new explicit stabilized scheme of weak order one for stiff and ergodic stochastic differential equations (SDEs) is introduced. In the absence of noise, the new method coincides with the classical deterministic stabilized scheme (or Chebyshev method) for diffusion dominated advection-diffusion problems and it inherits its optimal stability domain size that grows quadratically with the number of internal stages of the method. For mean-square stable stiff stochastic problems, the scheme has an optimal extended mean-square stability domain that grows at the same quadratic rate as the deterministic stability domain size in contrast to known existing methods for stiff SDEs [A. Abdulle and T. Li. Commun. Math. Sci., 6(4), 2008, A. Abdulle, G. Vilmart, and K. C. Zygalakis, SIAM J. Sci. Comput., 35(4), 2013]. Combined with postprocessing techniques, the new methods achieve a convergence rate of order two for sampling the invariant measure of a class of ergodic SDEs, achieving a stabilized version of the non-Markovian scheme introduced in [B. Leimkuhler, C. Matthews, and M. V. Tretyakov, Proc. R. Soc. A, 470, 2014].
Explicit stabilized methods are an efficient alternative to implicit schemes for the time integration of stiff systems of differential equations in large dimension. In this paper we derive explicit stabilized integrators of orders one and two for the optimal control of stiff systems. We analyze their favorable stability properties based on the continuous optimality conditions. Furthermore, we study their order of convergence taking advantage of the symplecticity of the corresponding partitioned Runge-Kutta method involved for the adjoint equations. Numerical experiments including the optimal control of a nonlinear diffusion-advection PDE illustrate the efficiency of the new approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.