To combat the coronavirus disease 2019 (COVID-19), great efforts have been made by scientists around the world to improve the performance of detection devices so that they can efficiently and quickly detect the virus responsible for this disease. In this context we performed 2D finite element simulation on the kinetics of SARS-CoV-2 S protein binding reaction of a biosensor using the alternating current electrothermal (ACET) effect. The ACET flow can produce vortex patterns, thereby improving the transportation of the target analyte to the binding surface and thus enhancing the performance of the biosensor. Optimization of some design parameters concerning the microchannel height and the reaction surface, such as its length as well as its position on the top wall of the microchannel, in order to improve the biosensor efficiency, was studied. The results revealed that the detection time can be improved by 55% with an applied voltage of 10 V rms and an operating frequency of 150 kHz and that the decrease in the height of the microchannel and in the length of the binding surface can lead to an increase in the rate of the binding reaction and therefore decrease the biosensor response time. Also, moving the sensitive surface from an optimal position, located in front of the electrodes, decreases the performance of the device.
In this research, Taguchi's method was employed to optimize the performance of a microfluidic biosensor with an integrated flow confinement for rapid detection of the SARS-CoV-2. The finite element method was used to solve the physical model which has been first validated by comparison with experimental results. The novelty of this study is the use of the Taguchi approach in the optimization analysis. An L8 2 7 orthogonal array of seven critical parameters-Reynolds number (Re), Damköhler number (Da), relative adsorption capacity (σ ), equilibrium dissociation constant (K D ), Schmidt number (Sc), confinement coefficient (α) and dimensionless confinement position (X), with two levels was designed. Analysis of variance (ANOVA) methods are also used to calculate the contribution of each parameter. The optimal combination of these key parameters was Re 10 -2 , Da 1000, σ 0.5, K D 5, Sc 10 5 , α 2 and X 2 to achieve the lowest dimensionless response time (0.11). Among the all-optimization factors, the relative adsorption capacity (σ ) has the highest contribution (37%) to the reduction of the response time, while the Schmidt number (Sc) has the lowest contribution (7%).
The performance of microfluidic biosensor of the SARS-Cov-2 was numerically analyzed through finite element method. The calculation results have been validated with comparison with experimental data reported in the literature. The novelty of this study is the use of the Taguchi method in the optimization analysis, and an L8(2 5 ) orthogonal table of five critical parameters-Reynolds number (Re), Damko ¨hler number (Da), relative adsorption capacity (r), equilibrium dissociation constant (K D ), and Schmidt number (Sc), with two levels was designed. ANOVA methods are used to obtain the significance of key parameters. The optimal combination of the key parameters is Re = 10 -2 , Da = 1000, r = 0.2, K D = 5, and Sc 10 4 to achieve the minimum response time (0.15). Among the selected key parameters, the relative adsorption capacity (r) has the highest contribution (42.17%) to the reduction of the response time, while the Schmidt number (Sc) has the lowest contribution (5.19%). The presented simulation results are useful in designing microfluidic biosensors in order to reduce their response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.