We study the existence and uniqueness of a bounded weak solution for a triply nonlinear thermistor problem in Sobolev spaces. Furthermore, we prove the existence of an absorbing set and, consequently, the universal attractor.
In this work, we study the Poincare inequality in Sobolev spaces with variable exponent. As a consequence of this ´ result we show the equivalent norms over such cones. The approach we adopt in this work avoids the difficulty arising from the possible lack of density of the space C∞ 0 (Ω).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.