Abstract:High soil salinity is a major abiotic stress in plant production worldwide. TaNIP gene was identified and cloned through the gene chip expression analysis of a salt-tolerant wheat mutant RH8706-49 under salt stress. Quantitative reverse transcription -PCR (Q-RT-PCR) was used to detect TaNIP salt tolerant gene and its expression in some selected wheat genotype for salt tolerance through plant breeding programs. The results of qualitative PCR Reaction-cDNA and Quantitative Real-Time PCR showed that the gene band appeared only in the selected genotypes with length 189bp, while this band absent in salt sensitive cultivar (Iraq) under salinity and non-salinity condition. Amount and expression of TaNIP gene to be enhanced under salinity condition only in the selected salt tolerant genotype, and they increased with increasing salt level. Great expression and amount of TaNIP gene was at high salinity level (20 ds/m). The selected salt tolerant genotype had proximately similar amount and expression of TaNIP gene under all salinity condition, while there had no amounts and expression of this gene in sensitive cultivar (Iraq) therefore according to this gene (TaNIP) there is improvement realized in these selected genotypes for salt tolerance through plant breeding programs.
The genetic development for salt tolerance in wheat is very important approach for the plant breeder to overcome salinity problem. Estimation of salt tolerance by two selected genotypes of wheat (4H, N5) was conducted in plastic house as compared with the local cultivars Tamoz 2 to know the development that happened in salt tolerance in these genotypes through the plant breeding programs. The experiment was conducted in pots using four salinity levels (2, 5, 10, 15)ds/m. The experimental design was RCBD with three blocks. Results indicated that both selected genotypes were significantly superior in all measured characters to check cultivar at all salinity levels. There were differences between the two selected genotypes in different traits, but not significant especially at high salinity levels. At these salinity levels, the selected genotypes had more growth in shoots and roots. The differences between the two selected genotypes and the check cultivar in all characters increased in high salinity level. In conclusion, there were genetically improvements with aspect to salt tolerance achieved in selected genotypes through breeding and improvement programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.