The ammonia pollution/contamination reveals at the inlet of drinking water treatment plants, especially on Northern coast of Egypt, due to the drainage of sewage and industrial wastes from factories along the Nile River, resulting in more neutralization that clogs inlet of water treatment plants. Ammonia causes many diseases; some of them lead to coma or death. Excess ammonia also causes the winter dam in North Egypt to force the drinking water treatment stations to stop operation because of the high pollution load. Therefore, many researchers removed ammonia from drinking water as it was limited to 0.5 ppm in the European association and WHO. In this review, a criticizing summary of researches work (1983-2021) is presented where removal of ammonia by physical (i.e. adsorption, air stripping, and membrane distillation), biological, and chemical (oxidation, struvite, photocatalyst, cold plasma) methods were reviewed.
The winter closure is an annual action taken every year by the Egyptian authorities by closing water flows in series of channels for maintenance of water channels where levels in water channels are forced to reduce. However, Kafr El Sheikh and El Behaira, located in North Egypt, were affected by pollutant during winter closure due to the drainage of industrial wastes causing high pollution load of ammonia (mainly) and other pollutants. This paper focuses on testing agricultural wastes and natural materials to decrease ammonia in water at the inlet of water treatment stations that may reach 30 mg/l which happened during the winter closure. Nine adsorbents were investigated for ammonia removal: sugarcane peels, activated diatom, activated carbon, activated zeolite, rice straw, white foam, ilmenite, red brick, and a mixture of ilmenite with sugarcane. The sugarcane peels were the optimum treatment solution with a removal efficiency of 58% at an initial concentration of 38 mg/l, ~ 0.7 g of the adsorbent mass, and pH ranges from 10 to 12 after 1 h of contact time. At the same time, ilmenite reached an efficiency of 62% at an initial concentration of 21 mg/l, ~ 1.7 g of ilmenite, and pH 7 after 1 h of contact time. In addition, the reaction kinetics and adsorption isotherms were investigated for the selected adsorbent sugarcane peels, and the results showed that it matched the first-order kinetics with a regression coefficient (R2) of 0.99 and Langmuir adsorption isotherm (R2) of 0.96. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.