As the production and use of engineered nanomaterials increase, there is an urgent need to develop analytical techniques that are sufficiently sensitive to be able to measure the very small nanoparticles (NP) at very low concentrations. Although single particle ICP-MS (SP-ICP-MS) is emerging as one of the best techniques for detecting NP, it is limited by relatively high size detection limits for several NP, including many of the oxides. The use of a high sensitivity sector field ICP-MS (ICP-SF-MS), microsecond dwell times, and dry aerosol sample introduction systems were examined with the goal of lowering the size detection limits of the technique. For samples injected as a wet aerosol, size detection limits as low as 4.9 nm for Ag NP and 19.2 nm for TiO2 NP were determined. By using a dry aerosol, a significant gain in ion extraction from the plasma was obtained, which resulted in a noticeable decrease of the size detection limits to 3.5 nm for the Ag NP and 12.1 nm for the TiO2 NP. These substantial improvements were applied to the detection of TiO2 NP in sunscreen lotions, rainwaters, and swimming pool waters. Concentrations of Ti-containing NP between 27 and 193 μL–1 were found in rain samples. Similar NP concentrations were detected in public swimming pools, although much higher particle number concentrations (6046 ± 290 μL–1) were measured in a paddling pool, which was attributed to a high concentration of sunscreen lotions in a small recirculated water volume. High losses of TiO2 NP through adsorption or agglomeration resulted in recoveries ranging from 14–34%.
Nanoparticle (NP) emissions to the environment are increasing as a result of anthropogenic activities, prompting concerns for ecosystems and human health. In order to evaluate the risk of NPs, it is necessary to know their concentrations in various environmental compartments on regional and global scales; however, these data have remained largely elusive due to the analytical difficulties of measuring NPs in complex natural matrices. Here, we measure NP concentrations and sizes for Ti-, Ce-, and Ag-containing NPs in numerous global surface waters and precipitation samples, and we provide insights into their compositions and origins (natural or anthropogenic). The results link NP occurrences and distributions to particle type, origin, and sampling location. Based on measurements from 46 sites across 13 countries, total Ti-and Ce-NP concentrations (regardless of origin) were often found to be within 10 4 to 10 7 NP mL −1 , whereas Ag NPs exhibited sporadic occurrences with low concentrations generally up to 10 5 NP mL −1 . This generally corresponded to mass concentrations of <1 ng L −1 for Ag-NPs, <100 ng L −1 for Ce-NPs, and <10 μg L −1 for Ti-NPs, given that measured sizes were often below 15 nm for Ce-and Ag-NPs and above 30 nm for Ti-NPs. In view of current toxicological data, the observed NP levels do not yet appear to exceed toxicity thresholds for the environment or human health; however, NPs of likely anthropogenic origins appear to be already substantial in certain areas, such as urban centers. This work lays the foundation for broader experimental NP surveys, which will be critical for reliable NP risk assessments and the regulation of nano-enabled products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.