Human action recognition is still a challenging problem and researchers are focusing to investigate this problem using different techniques. We propose a robust approach for human action recognition. This is achieved by extracting stable spatio-temporal features in terms of pairwise local binary pattern (P-LBP) and scale invariant feature transform (SIFT). These features are used to train an MLP neural network during the training stage, and the action classes are inferred from the test videos during the testing stage. The proposed features well match the motion of individuals and their consistency, and accuracy is higher using a challenging dataset. The experimental evaluation is conducted on a benchmark dataset commonly used for human action recognition. In addition, we show that our approach outperforms individual features i.e. considering only spatial and only temporal feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.