Objective: Mutations in the gene encoding phospholipase A 2 group VI (PLA2G6) are associated with two childhood neurologic disorders: infantile neuroaxonal dystrophy (INAD) and idiopathic neurodegeneration with brain iron accumulation (NBIA). INAD is a severe progressive psychomotor disorder in which axonal spheroids are found in brain, spinal cord, and peripheral nerves. High globus pallidus iron is an inconsistent feature of INAD; however, it is a diagnostic criterion of NBIA, which describes a clinically and genetically heterogeneous group of disorders that share this hallmark feature. We sought to delineate the clinical, radiographic, pathologic, and genetic features of disease resulting from defective phospholipase A 2 . Methods:We identified 56 patients clinically diagnosed with INAD and 23 with idiopathic NBIA and screened their DNA for PLA2G6 mutations. Results:Eighty percent of patients with INAD had mutations in PLA2G6, whereas mutations were found in only 20% of those with idiopathic NBIA. All patients with two null mutations had a more severe phenotype. On MRI, nearly all mutation-positive patients had cerebellar atrophy, and half showed brain iron accumulation. We observed Lewy bodies and neurofibrillary tangles in association with PLA2G6 mutations. The neuroaxonal dystrophies are degenerative disorders that share the pathologic feature of axonal spheroids in brain. Spheroids are poorly understood axonal swellings that occur in infantile neuroaxonal dystrophy (INAD), pantothenate kinase-associated neurodegeneration (PKAN, formerly Hallervorden-Spatz syndrome), idiopathic neurodegeneration with brain iron accumulation (NBIA), and Schindler disease. INAD is a severe psychomotor disorder with early onset and rapid progression of hypotonia, hyperreflexia, and tetraparesis. Conclusion:1 Spheroids are found in both the central and peripheral nervous systems in INAD, and iron accumulates in brain in a subset of these patients. 2,3 The term "neurodegeneration with brain iron accumulation" is used both as a descriptor
The brain parenchyma consists of several different cell types, such as neurones, astrocytes, microglia, oligodendroglia and epithelial cells, which are morphologically and functionally intermingled in highly complex three-dimensional structures. These different cell types are also present in cultures of brain cells prepared to serve as model systems of CNS physiology. Gene transfer, either in a therapeutic attempt or in basic research, is a fascinating and promising tool to manipulate both the complex physiology of the brain and that of isolated neuronal cells. Viral vectors based on the parvovirus, adeno-associated virus (AAV), have emerged as powerful transgene delivery vehicles. Here we describe highly efficient targeting of AAV vectors to either neurones or astrocytes in cultured primary brain cell cultures. We also show that transcriptional targeting can be achieved by the use of small promoters, significantly boosting the transgene capacity of the recombinant viral genome. However, we also demonstrate that successful targeting of a vector in vitro does not necessarily imply that the same targeting works in the adult brain. Cross-packaging the AAV-2 genome in capsids of other serotypes adds additional benefits to this vector system. In the brain, the serotype-5 capsid allows for drastically increased spread of the recombinant vector as compared to the serotype-2 capsid. Finally, we emphasize the optimal targeting approach, in which the natural tropism of a vector for a specific cell type is employed. Taken together, these data demonstrate the flexibility which AAV-based vector systems offer in physiological research.
Mutations in the PLA2G6 gene, which encodes group VIA calcium-independent phospholipase A2 (iPLA 2 ), were recently identified in patients with infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation. A pathological hallmark of these childhood neurodegenerative diseases is the presence of distinctive spheroids in distal axons that contain accumulated membranes. We used iPLA 2 -KO mice generated by homologous recombination to investigate neurodegenerative consequences of PLA2G6 mutations. iPLA 2 -KO mice developed age-dependent neurological impairment that was evident in rotarod, balance, and climbing tests by 13 months of age. The primary abnormality underlying this neurological impairment was the formation of spheroids containing tubulovesicular membranes remarkably similar to human INAD. Spheroids were strongly labeled with anti-ubiquitin antibodies. Accumulation of ubiquitinated protein in spheroids was evident in some brain regions as early as 4 months of age, and the onset of motor impairment correlated with a dramatic increase in ubiquitin-positive spheroids throughout the neuropil in nearly all brain regions. Furthermore accumulating ubiquitinated proteins were observed primarily in insoluble fractions of brain tissue, implicating protein aggregation in this pathogenic process. These results indicate that loss of iPLA 2  causes age-dependent impairment of axonal membrane homeostasis and protein degradation pathways, leading to age-dependent neurological impairment. iPLA 2 -KO mice will be useful for further studies of pathogenesis and experimental interventions in INAD and neurodegeneration with brain iron accumulation.
The inherently low regenerative capacity of the CNS demands effective strategies to inhibit neurodegeneration in acute lesions but also in slowly progressive neurological disorders. Therefore, therapeutic targets that can interact with the degeneration cascade to block, not just postpone, neuronal degeneration need to be defined. Bcl-X(L), a protein protecting the integrity of the mitochondrial membrane potential, was investigated for its neuroprotective properties in a long-term in vivo model of neuronal cell death. An AAV-2-based vector was used to express both Bcl-X(L) and EGFP in retinal ganglion cells (RGCs) of the adult rat retina. Transection of the optic nerve results in degeneration of RGCs in control retinae, while Bcl-X(L)-overexpressing ganglion cells were protected from degeneration. At 2 weeks after axotomy, 94% of the transduced RGCs survived the lesion (15% in controls). For the first time, we investigated RGC survival up to 8 weeks after axotomy and detected that 46% of the Bcl-X(L)-overexpressing RGCs still survived, representing significantly increased neuroprotection compared to neurotrophin-based approaches. We could also show that the axons of AAV-Bcl-X(L)-transduced RGCs remained morphologically intact after the lesion, thus providing the basis for regeneration-inducing attempts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.