Worldwide, urban areas are expanding both in size and number, which results in a decline in habitats suitable for urban flora and fauna. The construction of urban green features, such as green roofs, may provide suitable habitat patches for many species in urban areas. On green roofs, two approaches have been used to select plants—i.e., matching similar habitat to green roofs (habitat template approach) or identifying plants with suitable traits (plant trait approach). While both approaches may result in suitable habitats for arthropods, how arthropods respond to different combinations of plants is an open question. The aim of this study was to investigate how the structural complexity of different plant forms can affect the abundance and richness of arthropods on green roofs. The experimental design crossed the presence and absence of annuals with three Sedum sediforme (Jacq.) Pau (common name: stonecrops) treatments—i.e., uniformly disrupted Sedum, clumped disrupted Sedum, and no Sedum. We hypothesized that an increased structural diversity due to the coexistence of different life forms of plants on roofs is positively related to the abundance and richness of arthropods. We found that arthropod abundance and richness were positively associated with the percent of vegetation cover and negatively associated with substrate temperature. Neither arthropod abundance nor richness was influenced by the relative moisture of substrate. We also found that arthropod abundance and richness varied by green roof setups (treatments) and by seasonality. Arthropod abundance on green roofs was the highest in treatments with annuals only, while species richness was slightly similar between treatments containing annuals but varied between sampling periods. This study suggests that adding annuals to traditional Sedum roofs has positive effects on arthropods. This finding can support the development of biodiverse cities because most extensive green roofs are inaccessible to the public and can provide undisturbed habitat for several plant and arthropod species.
Trees host a large share of the global arthropod diversity. Several methodologies have been described to sample arthropods from trees, ranging from active sampling techniques (e.g., visual searching, beating, or shaking the branches) to passive sampling devices. The majority of these collection techniques are destructive, and do not specifically target the tree trunk arthropod fauna. Here, we describe an alternative sampling method called trunk refugia (TR). TR are cylindrical shelters made of corrugated cardboard that can be secured to trees using string, and can remain exposed for varying time periods. These refugia are inexpensive, easy to use, and suitable to monitor a diverse array of insects and arachnids. Moreover, TR are nonlethal sampling tools, and allow collecting live individuals for behavioral studies or for rearing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.