A fast neutron tomography imaging instrument has been designed, built, and tested at The Ohio State University 500 kW Research Reactor on a fast neutron beamline with a peak neutron flux ≈5.4 × 107 n·cm−2·s−1 at 1.6 MeV median neutron energy. The instrument and beamline are also configurable for thermal neutron imaging. The imaging apparatus is composed of a lens coupled, water-cooled Electron Multiplying Charge Coupled Device camera, a front-surface mirror, and a high light yield plastic Polyvinyl toluene scintillator. The instrument sits on a mobile cart. A total of 5 motion-control stages are built into the system for XYZ and rotational degrees of freedom for sample positioning; the fifth stage fine tunes the focal distance between the camera and the scintillator to achieve on-line focusing. A Python code with a user-friendly graphical user interface controls the fully automated image acquisition, not requiring user interaction, yet facilitating tracking of the image acquisition. A complete fast neutron computed tomography dataset with 360 projections requires less than 3 h, with 30 s per projection. On-line focusing is accomplished with a commercial, off-the-shelf, dielectrically actuated liquid lens. Finally, tomographic reconstructions are visualized using the Livermore Tomography Tools software package. The effective pixel size (width and height) is ≈0.1058 mm, yielding a minimum voxel size of 0.1058 × 0.1058 × 0.1058 mm3, and produces a spatial resolution of 231 μm when calculated from knife-edge measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.