There have been many published articles describing solar position algorithms for solar radiation applications. The best uncertainty achieved in most of these articles is greater than ±0.01/ in calculating the solar zenith and azimuth angles. For some, the algorithm is valid for a limited number of years varying from 15 years to a hundred years. This report is a step by step procedure for implementing an algorithm to calculate the solar zenith and azimuth angles in the period from the year-2000 to 6000, with uncertainties of ±0.0003/. The algorithm is described by Jean Meeus [3]. This report is written in a step by step format to simplify the complicated steps described in the book, with a focus on the sun instead of the planets and stars in general. It also introduces some changes to accommodate for solar radiation applications. The changes include changing the direction of measuring azimuth angles to be measured from north and eastward instead of being measured from south and eastward, and the direction of measuring the observer's geographical longitude to be measured as positive eastward from Greenwich meridian instead of negative. This report also includes the calculation of incidence angle for a surface that is tilted to any horizontal and vertical angle, as described by Iqbal [4]. v Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Printed on paper containing at least 50% wastepaper, including 10% post consumer waste. the radiometer calibrations and for making sure that all instruments were properly calibrated and within tolerance. Many thanks also for NREL's Metrology Laboratory, PV, Resource Assessment, and Atmospheric System Research programs for their continuous improvement in the field of radiometry, and for providing the support and funds for this effort.
developed by PMOD/WRC took part in these intercomparisons. The internal consistency of the IRIS radiometers and the agreement with the ACP were within ±1 W m −2 , providing traceability of atmospheric longwave irradiance to the international system of units with unprecedented accuracy. Measurements performed during the two field campaigns and over the past 4 years have shown that the World Infrared Standard Group (WISG) of pyrgeometers is underestimating clear-sky atmospheric longwave irradiance by 2 to 6 W m −2 , depending on the amount of integrated water vapor (IWV). This behavior is an instrument-dependent feature and requires an individual sensitivity calibration of each pyrgeometer with respect to an absolute reference such as IRIS or ACP. For IWV larger than 10 mm, an average sensitivity correction of +6.5% should be applied to the WISG in order to be consistent with the longwave reference represented by the ACP and IRIS radiometers. A concerted effort at international level will need to be implemented in order to correct measurements of atmospheric downwelling longwave irradiance traceable to the WISG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.