In this study, the Stokes flow problem in an S-shaped double lid-driven cavity filled with fluid was analyzed. Side edges of the cavity were considered as immovable walls. The flow region was divided into two sub-regions, and the streamfunction in each sub-region was considered as an extension of Papkovich–Faddle eigenfunctions. Parameters in the analytical solution were obtained using biorthogonality conditions. The Newton iteration method was used to obtain the eigenvalues of the problem, and integrals were calculated with the Gaussian quadrature method. It was ensured that solutions made separately for the two sub-regions converge on the interface, which is the intersection of these sub-regions. The two parameters controlling the flow structure were determined as the speed ratio of movable lids (S) and the aspect ratio of the cavity (A). The effects of these parameters on flow structures were shown. New eddy formation mechanisms and bifurcations were observed in the cavity by keeping the speed ratio of the lids constant and slowly changing the aspect ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.