While visual assessment is the standard technique for burn evaluation, computer-aided diagnosis is increasingly sought due to high number of incidences globally. Patients are increasingly facing challenges which are not limited to shortage of experienced clinicians, lack of accessibility to healthcare facilities and high diagnostic cost. Certain number of studies were proposed in discriminating burn and healthy skin using machine learning leaving a huge and important gap unaddressed; whether burns and related skin injuries can be effectively discriminated using machine learning techniques. Therefore, we specifically use transfer learning by leveraging pre-trained deep learning models due to deficient dataset in this paper, to discriminate two classes of skin injuries—burnt skin and injured skin. Experiments were extensively conducted using three state-of-the-art pre-trained deep learning models that includes ResNet50, ResNet101 and ResNet152 for image patterns extraction via two transfer learning strategies—fine-tuning approach where dense and classification layers were modified and trained with features extracted by base layers and in the second approach support vector machine (SVM) was used to replace top-layers of the pre-trained models, trained using off-the-shelf features from the base layers. Our proposed approach records near perfect classification accuracy in categorizing burnt skin ad injured skin of approximately 99.9%.
Malaria is one of the most infectious diseases in the world, particularly in developing continents such as Africa and Asia. Due to the high number of cases and lack of sufficient diagnostic facilities and experienced medical personnel, there is a need for advanced diagnostic procedures to complement existing methods. For this reason, this study proposes the use of machine-learning models to detect the malaria parasite in blood-smear images. Six different features—VGG16, VGG19, ResNet50, ResNet101, DenseNet121, and DenseNet201 models—were extracted. Then Decision Tree, Support Vector Machine, Naïve Bayes, and K-Nearest Neighbour classifiers were trained using these six features. Extensive performance analysis is presented in terms of precision, recall, f-1score, accuracy, and computational time. The results showed that automating the process can effectively detect the malaria parasite in blood samples with an accuracy of over 94% with less complexity than the previous approaches found in the literature.
While visual assessment is the standard technique for burn evaluation, computer-aided diagnosis is increasingly sought due to high number of incidences globally. Patients are increasingly facing challenges which are not limited to shortage of experienced clinicians, lack of accessibility to healthcare facilities, and high diagnostic cost. Certain number of studies were proposed in discriminating burn and healthy skin using machine learning leaving a huge and important gap unaddressed; whether burns and related skin injuries can be effectively discriminated using machine learning techniques. Therefore, we specifically use pre-trained deep learning models due to deficient dataset to train a new model from scratch. Experiments were extensively conducted using three stateof-the-art pre-trained deep learning models that includes ResNet50, ResNet101 and ResNet152 for image patterns extraction via two transfer learning strategies: fine-tuning approach where dense and classification layers were modified and trained with features extracted by base layers, and in the second approach support vector machine (SVM) was used to replace top-layers of the pre-trained models, trained using off-the-shelf features from the base layers. Our proposed approach records near perfect classification accuracy of approximately 99.9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.