Sex-related differences in cardiovascular diseases are highly complex in humans and model-dependent in experimental laboratory animals. The objective of this work was to comprehensively investigate key sex differences in the response to acute and prolonged adrenergic stimulation in C57Bl/6NCrl mice. Cardiac function was assessed by trans-thoracic echocardiography before and after acute adrenergic stimulation (a single sub-cutaneous dose of isoproterenol 10 mg/kg) in 15 weeks old male and female C57Bl/6NCrl mice. Thereafter, prolonged adrenergic stimulation was achieved by sub-cutaneous injections of isoproterenol 10 mg/kg/day for 14 days in male and female mice. Cardiac function and morphometry were assessed by trans-thoracic echocardiography on the 15 th day. Thereafter, the mice were euthanized, and the hearts were collected. Histopathological analysis of myocardial tissue was performed after staining with hematoxylin & eosin, Masson's trichrome and MAC-2 antibody. Gene expression of remodeling and fibrotic markers was assessed by real-time PCR. Cardiac function and morphometry were also measured before and after isoproterenol 10 mg/kg/day for 14 days in groups of gonadectomized male and female mice and sham-operated controls. In the current work, there were no statistically significant differences in the positive inotropic and chronotropic effects of isoproterenol between male and female C57Bl/6NCrl. After prolonged adrenergic stimulation, there was similar degree of cardiac dysfunction, cardiac hypertrophy, and myocardial fibrosis in male and female mice. Similarly, prolonged isoproterenol administration induced hypertrophic and fibrotic genes in hearts of male and female mice to the same extent. Intriguingly, gonadectomy of male and female mice did not have a significant impact on isoproterenol-induced cardiac dysfunction as compared to sham-operated animals. The current work demonstrated lack of significant sex-related differences in isoproterenol-induced cardiac hypertrophy, dysfunction, and fibrosis in C57Bl/6NCrl mice. This study suggests that female sex may not be sufficient to protect the heart in this model of isoproterenol-induced cardiac dysfunction and underscores the notion that sexual dimorphism in cardiovascular diseases is highly model-dependent.
Doxorubicin (DOX) induces endothelial cell (EC) senescence, which contributes to endothelial dysfunction and cardiovascular complications. Senolytic drugs selectively eliminate senescent cells to ameliorate senescence-mediated pathologies. Previous studies have demonstrated differences between immortalized and primary EC models in some characteristics. However, the response of DOX-induced senescent ECs to senolytics has not been determined across these two models. In the present work, we first established a comparative characterization of DOX-induced senescence phenotypes in immortalized EA.hy926 endothelial-derived cells and primary human umbilical vein EC (HUVECs). Thereafter, we evaluated the senolytic activity of four senolytics across both ECs. Following the DOX treatment, both EA.hy926 and HUVECs shared similar senescence phenotypes characterized by upregulated senescence markers, increased SA-β-gal activity, cell cycle arrest, and elevated expression of the senescence-associated secretory phenotype (SASP). The potentially senolytic drugs dasatinib, quercetin, and fisetin demonstrated a lack of selectivity against DOX-induced senescent EA.hy926 cells and HUVECs. However, ABT-263 (Navitoclax) selectively induced the apoptosis of DOX-induced senescent HUVECs but not EA.hy926 cells. Mechanistically, DOX-treated EA.hy926 cells and HUVECs demonstrated differential expression levels of the BCL-2 family proteins. In conclusion, both EA.hy926 cells and HUVECs demonstrate similar DOX-induced senescence phenotypes but they respond differently to ABT-263, presumably due to the different expression levels of BCL-2 family proteins.
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Doxorubicin (DOX) is a chemotherapeutic agent that has been reported to cause nephrotoxicity in rodent models and to a lesser degree in cancer patients. Female rodents have been shown to be protected against several features of DOX-induced nephrotoxicity. Nevertheless, the underlying mechanisms of this sexual dimorphism are not fully elucidated. Therefore, in the current study, we investigated the sex and time-dependent changes in pathological lesions as well as apoptotic and fibrotic markers in response to acute DOX-induced nephrotoxicity. We also determined the effect of acute DOX treatment on the renal expression of the sexually dimorphic enzyme, soluble epoxide hydrolase (sEH), since inhibition of sEH has been shown to protect against DOX-induced nephrotoxicity. Acute DOX-induced nephrotoxicity was induced by a single intra-peritoneal injection of 20 mg/kg DOX to male and female adult C57Bl/6 mice. The kidneys were isolated 1, 3 and 6 days after DOX administration. Histopathology assessment, gene expression of the apoptotic marker, BAX , protein expression of the fibrotic marker, transforming growth factor-β (TGF-β), and gene and protein expression of sEH were assessed. DOX administration caused more severe pathological lesions as well as higher induction of the apoptotic and fibrotic markers in kidneys of male than in female mice. Intriguingly, DOX inhibited sEH protein expression in kidneys of male mice sacrificed at 3 and 6 days following administration, suggesting that induction of sEH is not necessary for acute DOX-induced nephrotoxicity. However, DOX-induced inhibition of renal sEH in male mice may protect the kidney from further DOX-induced injury in a negative feedback mechanism. We also observed lower constitutive expressions of TGF-β and sEH in the kidney of female mice which may contribute, at least in part, to sexual dimorphism of DOX-induced nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.