This paper presents a principled approach for detecting out-of-distribution (OOD) samples in deep neural networks (DNN). Modeling probability distributions on deep features has recently emerged as an effective, yet computationally cheap method to detect OOD samples in DNN. However, the features produced by a DNN at any given layer do not fully occupy the corresponding high-dimensional feature space. We apply linear statistical dimensionality reduction techniques and nonlinear manifold-learning techniques on the high-dimensional features in order to capture the true subspace spanned by the features. We hypothesize that such lower-dimensional feature embeddings can mitigate the curse of dimensionality, and enhance any feature-based method for more efficient and effective performance. In the context of uncertainty estimation and OOD, we show that the log-likelihood score obtained from the distributions learnt on this lower-dimensional subspace is more discriminative for OOD detection. We also show that the feature reconstruction error, which is the L 2 -norm of the difference between the original feature and the pre-image of its embedding, is highly effective for OOD detection and in some cases superior to the log-likelihood scores. The benefits of our approach are demonstrated on image features by detecting OOD images, using popular DNN architectures on commonly used image datasets such as CIFAR10, CIFAR100, and SVHN.Preprint. Under review.
Data poisoning attacks compromise the integrity of machine-learning models by introducing malicious training samples to influence the results during test time. In this work, we investigate backdoor data poisoning attack on deep neural networks (DNNs) by inserting a backdoor pattern in the training images. The resulting attack will misclassify poisoned test samples while maintaining high accuracies for the clean test-set. We present two approaches for detection of such poisoned samples by quantifying the uncertainty estimates associated with the trained models. In the first approach, we model the outputs of the various layers (deep features) with parametric probability distributions learnt from the clean held-out dataset. At inference, the likelihoods of deep features w.r.t these distributions are calculated to derive uncertainty estimates. In the second approach, we use Bayesian deep neural networks trained with mean-field variational inference to estimate model uncertainty associated with the predictions. The uncertainty estimates from these methods are used to discriminate clean from the poisoned samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.