A new index for a precise calculation of a manipulator’s stiffness isotropy is introduced. The proposed index is compared with the conventionally used stiffness isotropy index by making use of the investigation on R-CUBE manipulator. The proposed index is shown to produce relatively more precise results from which a higher number of isotropic poses are detected.
A kinesthetic haptic device's performance relies on unpowered, powered and controlled system characteristics. In this paper, a critical review is carried out for the well-known metrics for kinematics, stiffness and dynamic aspects of robots that can be applied in evaluating the unpowered system performance of kinesthetic haptic devices. The physical meanings of these metrics are discussed and the important factors that affect the unpowered system performance of a kinesthetic haptic device are revealed.
Haptic device manipulators are used for generating haptic feedback. This feedback is composed of force which is regulated with respect to motion information. Accurate generation of the feedback requires exact position acquisition of the end-effector. Due to the compliant bodies of a manipulator, a stiffness model is needed to predict this position. Previously, Virtual Joint Method was adopted to obtain the stiffness model of an R-CUBE parallel haptic mechanism. In this paper, experimental test setup and experimental procedure are described for validating this stiffness model, its engineering feasibility and soundness of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.