Forward osmosis has gained tremendous attention in the field of desalination and wastewater treatment. However, membrane fouling is an inevitable issue. Membrane fouling leads to flux decline, can cause operational problems and can result in negative consequences that can damage the membrane. Hereby, we attempt to review the different types of fouling in forward osmosis, cleaning and control strategies for fouling mitigation, and the impact of membrane hydrophilicity, charge and morphology on fouling. The fundamentals of biofouling, organic, colloidal and inorganic fouling are discussed with a focus on recent studies. We also review some of the in-situ real-time online fouling monitoring technologies for real-time fouling monitoring that can be applicable to future research on forward osmosis fouling studies. A brief discussion on critical flux and the coupled effects of fouling and concentration polarization is also provided.
Organic fouling in the forward osmosis process is complex and influenced by different parameters in the forward osmosis such as type of feed and draw solution, operating conditions, and type of membrane. In this article, we reviewed organic fouling in the forward osmosis by focusing on wastewater treatment applications. Model organic foulants used in the forward osmosis literature were highlighted, which were followed by the characteristics of organic foulants when real wastewater was used as feed solution. The various physical and chemical cleaning protocols for the organic fouled membrane are also discussed. The study also highlighted the effective pre-treatment strategies that are effective in reducing the impact of organic fouling on the forward osmosis (FO) membrane. The efficiency of cleaning methods for the removal of organic fouling in the FO process was investigated, including recommendations on future cleaning technologies such as Ultraviolet and Ultrasound. Generally, a combination of physical and chemical cleaning is the best for restoring the water flux in the FO process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.