Through the analysis on the unique characteristics of Uyghur characters, in order to further improve the recognition rate, this paper developed the Center Distance Feature (CDF) to its modified form which is named as Modified Center Distance Feature (MCDF). By combination with some low dimensional features including stroke number feature, additional part's location feature, shape feature, bottom-up and left-right density feature(BULR) in experiments, MCDF gifted robust recognition accuracy of 98.77% for the 32 isolated forms of Uyghur characters. MCDF increased the recognition accuracy by 4.51 points comparing with the result from the combination of CDF with the same low dimensional features mentioned above, which is 94.16%. This paper used the samples from 400 different volunteers. The recognition system is trained using 70 percent of 12800 samples from 400 different writers and tested on the remained 30 percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.