Bioinspired control system strategies have received considerable attention in recent years, demonstrating their effectiveness to control various classes of systems. This paper presents a new robust LQR-based fuzzy-immune PID controller synthesis method, the particularity of this structure is the combination of the features granted by the linear quadratic regulator LQR and the fuzzy-immune PID controller as: robustness, optimization and self-adapting. The proposed approach is applied to the temperature control of a greenhouse system over Ethernet network. Such control loop is bound to be affected by several uncertainties such as communication delays, packet dropout... etc., it is therefore necessary to adopt a robust control strategy that can handle these problems. MATLAB/Simulink is used to simulate the proposed controller structure under several perturbations/uncertainties scenarios. The results show better time domain performance and greater robustness against uncertainties, in comparison with other PID structures (classic and fuzzy immune PID).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.