Computer science plays an important role in modern dynamic health systems. Given the collaborative nature of the diagnostic process, computer technology provides important services to healthcare professionals and organizations, as well as to patients and their families, researchers, and decision-makers. Thus, any innovations that improve the diagnostic process while maintaining quality and safety are crucial to the development of the healthcare field. Many diseases can be tentatively diagnosed during their initial stages. In this study, all developed techniques were applied to tuberculosis (TB). Thus, we propose an optimized machine learning-based model that extracts optimal texture features from TB-related images and selects the hyper-parameters of the classifiers. Increasing the accuracy rate and minimizing the number of characteristics extracted are our goals. In other words, this is a multitask optimization issue. A genetic algorithm (GA) is used to choose the best features, which are then fed into a support vector machine (SVM) classifier. Using the ImageCLEF 2020 data set, we conducted experiments using the proposed approach and achieved significantly higher accuracy and better outcomes in comparison with the state-of-the-art works. The obtained experimental results highlight the efficiency of modified SVM classifier compared with other standard ones.
It has been noted that disease detection approaches based on deep learning are becoming increasingly important in artificial intelligence-based research in the field of agriculture. Studies conducted in this area are not at the level that is desirable due to the diversity of plant species and the regional characteristics of many of these species. Although numerous researchers have studied diseases on plant leaves, it is undeniable that timely diagnosis of diseases on olive leaves remains a difficult task. It is estimated that people have been cultivating olive trees for 6000 years, making it one of the most useful and profitable fruit trees in history. Symptoms that appear on infected leaves can vary from one plant to another or even between individual leaves on the same plant. Because olive groves are susceptible to a variety of pathogens, including bacterial blight, olive knot, Aculus olearius, and olive peacock spot, it has been difficult to develop an effective olive disease detection algorithm. For this reason, we developed a unique deep ensemble learning strategy that combines the convolutional neural network model with vision transformer model. The goal of this method is to detect and classify diseases that can affect olive leaves. In addition, binary and multiclassification systems based on deep convolutional models were used to categorize olive leaf disease. The results are encouraging and show how effectively CNN and vision transformer models can be used together. Our model outperformed the other models with an accuracy of about 96% for multiclass classification and 97% for binary classification, as shown by the experimental results reported in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.