The covalent attachment of nonfunctionalized and carboxylic acid-functionalized carbon nanotubes to amine-terminated organic monolayers on gold and silicon surfaces is investigated. It is well established that the condensation reaction between a carboxylic acid and an amine is a viable method to anchor carbon nanotubes to solid substrates. The work presented here shows that the presence of the carboxylic group on the nanotube is not required for attachment to occur, as direct attachment via the substrate amine and the nanotube cage can take place. Scanning and transmission electron microscopy and atomic force microscopy confirm the presence of carbon nanotubes in intimate contact with the surface. X-ray photoelectron spectroscopy is utilized to compare the surface chemistry of the functionalized and nonfunctionalized carbon nanotubes and is supported by a computational investigation. Ion fragments attributed to the direct attachment between the surface and carbon nanotube cage are detected by time-of-flight secondary ion mass spectrometry. The overall attachment scheme is evaluated and can be further used on multiple carbonaceous materials attached to solid substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.