The primordial follicle reserve is the corner stone of female fertility and determines the longevity and quality of reproduction. Complete depletion of this reserve will lead to primary infertility, and the key-limiting step of follicle depletion is the transition from primordial to primary follicles. It has been reported that this process is gonadotrophin-independent, but other conflicting reports are indicated otherwise and this discrepancy needs to be unequivocally clarified. The aim of this study was to investigate the role of bone morphogenetic proteins (BMPs) in the regulation of folliculogenesis in mice passively immunised against BMP receptor 1B (BMPRIB) and BMP4. While a stereological study revealed that the numbers of primordial follicles in immunised mice were significantly higher when compared with control animals, treatment with equine chorionic gonadotrophin showed no effect. In parallel, immunofluorescence microscopy revealed the presence of BMPRIB but not FSH receptor in primordial follicles. The number of primary follicles in immunised mice were also significantly increased when compared with control animals. After puberty, the rates of depletion of primordial and primary follicles were increased with age, particularly in treated animals; however, there was no significant difference between the treatment groups of the same age. Based on these results together with our previous reports in sheep and mice, we confirm that the attenuation of BMP signalling system can be an effective approach to sustain the primordial follicle reserve while promoting the development of growing follicles, ovulation and consequently overall female fertility.
Bone morphogenetic proteins (BMPs) and receptors (BMPR-1A, BMPR-1B, BMPR-2) have been shown to be vital for female reproduction, while their roles in males are poorly described. Our study was undertaken to specify the function of BMPR-1B in steroidogenic enzyme gene expression, testosterone production and reproductive development in male mice, given that Bmpr1b mRNA is expressed in mouse testis and Bmpr1b knockout results in compromised fertility. Male mice were passively immunized for 6 days with anti-BMPR-1B in the presence or absence of exogenous gonadotrophins. We then measured the effects of anti-BMPR-1B on testicular hydroxysteroid dehydrogenase isoforms (Hsd3b1, Hsd3b6, and Hsd17b3) and aromatase (Cyp19) mRNA expression, testicular and serum testosterone levels, and testis and seminal vesicle weight. In vitro testosterone production in response to anti-BMPR-1B was determined using testicular culture, and Leydig cell culture in the presence or absence of gonadotrophins. In Leydig cell culture the contribution of seminiferous tubules and Leydig cells were examined by preconditioning the media with these testicular constituents. In adult mice, anti-BMPR-1B increased testosterone and Hsd3b1 but decreased Hsd3b6 and Cyp19 mRNA. In adult testicular culture and seminiferous tubule conditioned Leydig cell culture, anti-BMPR-1B reduced testosterone, while in normal and Leydig cell conditioned Leydig cell culture it increased testosterone levels. In pubertal mice, anti-BMPR-1B reduced gonadotrophin stimulated seminal vesicle growth. In conclusion, BMPR-1B has specific developmental functions in the autocrine and paracrine regulation of testicular steroidogenic enzyme gene expression and testosterone production in adults and in the development of seminal vesicles during puberty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.