This paper presents a novel breast model system based on a UWB antenna for locating a tumor cancer. The antenna with overall size of 35 mm × 20 mm × 1.6 mm is characterized with an ultrawideband of 120% and frequency range of 3 GHz-12 GHz for the FCC band. The proposed antenna exhibits good impedance matching, high gain and omnidirectional radiation patterns. The measurement results are presented to illustrate the performances of the proposed antenna. This antenna has been implemented in a designed system model with dielectric properties of a human breast capable to detect strange objects. The size and localization coordinates of the tumor are studied in detail for better tumor detection. The coordinates of the corresponding maximum value of SAR are identified in order to accurately detect different locations of tumor inside the breast. The results show that the localization of the tumor can be detected with high precision which demonstrates the performance of the proposed antenna and the entire system. The proposed breast model system was developed using the commercial CST Microwave studio simulator.
This work presents a new breast tumor detection system based on an omnidirectional microstrip ultra wideband antenna. The localization coordinates of the tumor are studied in detail for better tumor detection. The coordinates of the corresponding maximum value of SAR are identified in order to accurately detect different locations of tumor inside the breast. The results show that relying on these coordinates; the tumor can be detected with high accuracy. The possibility of mutual interferences with other systems operating at the FCC frequency band is considered as a major issue in UWB systems. Therefore, rejected out-band interference signals is introduced by etching single and double U-shaped slots on the radiating element, then a first and second frequency band are successfully produced respectively. The proposed antenna is a compact antenna that can be used on microwave imaging detection. The antenna gain was larger than 2 dbi with an omnidirectional radiation pattern over the whole frequency-band. A relatively flat group delay of the antenna response is also achieved. Antenna prototype has been manufactured and measured, results prove the performance of the proposed antenna.
The increasing challenges of agricultural processes and the growing demand for food globally are driving the industrial agriculture sector to adopt the concept of ‘smart farming’. Smart farming systems, with their real-time management and high level of automation, can greatly improve productivity, food safety, and efficiency in the agri-food supply chain. This paper presents a customized smart farming system that uses a low-cost, low-power, and wide-range wireless sensor network based on Internet of Things (IoT) and Long Range (LoRa) technologies. In this system, LoRa connectivity is integrated with existing Programmable Logic Controllers (PLCs), which are commonly used in industry and farming to control multiple processes, devices, and machinery through the Simatic IOT2040. The system also includes a newly developed web-based monitoring application hosted on a cloud server, which processes data collected from the farm environment and allows for remote visualization and control of all connected devices. A Telegram bot is included for automated communication with users through this mobile messaging app. The proposed network structure has been tested, and the path loss in the wireless LoRa is evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.