Ruminants are born with an undeveloped physical, metabolic, and microbial rumen. Rumen development is limited under artificial rearing systems when newborn animals are separated from the dam, fed on milk replacer, and weaned at an early age. This study aims to evaluate the effects of early-life inoculation of young ruminants with rumen fluid from adult animals. Eighty newborn goat kids were randomly allocated to 1 of 4 experimental treatments and inoculated daily from d 1 to wk 11 with autoclaved rumen fluid (AUT), fresh rumen fluid obtained from adult goats fed either a forage diet (RFF) or concentrate-rich diet (RFC), or absence of inoculation (CTL). Goat kids were artificially reared with ad libitum access to milk replacer, starter concentrate, and forage hay. Blood was sampled weekly and rumen microbial fermentation was monitored at 5 (preweaning), 7 (weaning), and 9 wk of age (postweaning). Results indicated that inoculation with fresh rumen fluid accelerated the rumen microbial and fermentative development before weaning. As a result, RFC and RFF animals had higher solid feed intake (+73%), rumen concentrations of ammonia-N (+26%), total volatile fatty acids (+46%), butyrate (+50%), and plasma β-hydroxybutyrate (+48%), and lower milk intake (−6%) than CTL and AUT animals at wk 5. Inoculation with fresh inoculum also promoted early rumen colonization by a complex and abundant protozoal community, whereas CTL animals remained protozoa free. Although all kids experienced moderate growth retardation during 1 wk after weaning, inoculation with fresh rumen fluid favored the weaning process, leading to 2.2 times higher weight gain than CTL and AUT animals during wk 8. Some of these advantages were retained during the postweaning period and RFF and RFC animals showed higher forage intake (up to +44%) than CTL and AUT animals with no detrimental effects on feed digestibility or stress levels.The superior microbial load of RFC compared with RFF inoculum tended to provide further improvements in terms of forage intake, plasma β-hydroxybutyrate, and rumen protozoa, whereas AUT inoculation provided minor (if any) advantages with respect to CTL animals. Although no differences were noted on animal growth, this study suggests that early life inoculation of goat kids with rumen microbiota can represent an effective strategy to accelerate the rumen development, facilitating a smooth transition from milk to solid feed and to the potential implementation of early weaning strategies.
Fresh rumen fluid sampled at 3 h after feeding from donor animals that were fed concentrate diets should be chosen when the aim is to provide the most diverse and active rumen microbial inoculum. © 2018 Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.