We present a summary of results from ten years of interplanetary scintillation (IPS) observations of stream interaction regions (SIRs) in the solar wind. Previous studies had shown that SIRs were characterized by intermediate-velocity solar wind and -in the case of compressive interactions -higher levels of scintillation. In this study we considered all cases of intermediate velocities in IPS observations from the European Incoherent SCATter (EISCAT) radar facility made at low-and mid-heliographic latitudes between 1994 and 2003. After dismissing intermediate-velocity observations which were associated with solar-wind transients (such as coronal mass ejections) we found that the remaining cases of intermediate velocities lay above coronal structures where stream interaction would be expected. An improved ballistic mapping method (compared to that used in earlier EISCAT studies of interaction regions) was used to identify the regions of raypath in IPS observations which might be expected to include interaction regions and to project these regions out to the distances of in-situ observations. The early stages of developing compression regions, consistent with their development on the leading edges of compressive stream interaction regions, were clearly detected as close to the Sun as 30 R , and further ballistic projection out to the distances of in-situ observations clearly associated these developing structures with density and velocity features characteristic of developed interaction regions in in-situ data in the cases when such data were available. The same approach was applied to study non-compressive interaction regions (shear layers) between solar-wind streams of different velocities where the stream interface lay at near-constant latitude and the results compared with those from compressive interaction regions. The results confirm that intermediate velocities seen in IPS observations above stream boundaries may arise from either detection of intermediate-velocity flow in compression regions, or from non-compressive shear layers. The variation in velocity about the mean determined from IPS measurements (representing the spread in velocity across that part of the raypath associated with the interaction region in the analysis) was comparable in compressive and non-compressive regions -a potentially interesting result which may contain important information on the geometry of developing SIRs. It is clear from these results that compressive and non-compressive interaction regions belong to the same class of stream -stream interaction, with the dominant mode determined by the latitudinal gradient of the stream interface. Finally, we discuss the results from this survey in the light of new data from the Heliospheric Imagers (HI) on the Solar TErrestrial RElations Observatory (STEREO) spacecraft and other instruments, and suggest possible directions for further work.
Abstract. We present the results of a thorough parameter study of coronal loop models in the aim to explore the mechanism behind coronal heating. The two-fluid coronal loops described in this paper have lengths from 10 Mm to 600 Mm and consist of protons and electrons. The loops are treated with our unique, self-consistent, steady state dynamic loop model to derive the basic parameters (as introduced by Li & Habbal 2003, ApJ, 598, L125). The only heating mechanism assumed is turbulently generated Alfvén waves that carry the necessary flux from the chromosphere to energize the coronal plasma through preferential heating of the proton gas. Strong Coulomb coupling allows energy to pass efficiently from protons to electrons. We have control over the independent variables, driving scale (l) and Alfvén amplitude (ξ), which influence the dissipation and flux of these resonant waves. We find "mapping" the loop parameter response to varying l with fixed ξ a useful tool to find where certain conditions for each loop length exist. From this, we are able to pin-point where the coldest solution lies. For a loop of L = 10 Mm, the coolest loops have a maximum temperature of T = 0.75 MK. We also focus on a L = 40 Mm loop and vary both l and ξ so we can compare results with existing work. From this parameter mapping we can categorise the loop heating profiles. Our model indicates the existence of footpoint, non-uniformly and quasi-uniformly heated profiles. There is also strong evidence to suggest the same mechanism may apply to hot, SXT loops.
Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α = 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α = 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.