This study compared the in vitro anthelmintic activity of Copaifera reticulata oleoresin (200, 400, 600, 800 and 1,000 mg/L) and of nanoemulsions prepared with this oleoresin (50, 100, 150, 200 and 250 mg/L) against monogeneans on the gills of Colossoma macropomum. The major compounds present in the oleoresin of C. reticulata were γ‐macrocarpene (14.2%), α‐bergamotene (13.6%), β‐selinene (13.4%) and β‐caryophyllene (11.7%). All concentrations of the nanoemulsion and the oleoresin without nanoformulation showed anthelmintic efficacy against monogeneans, and higher concentrations led to more rapid parasite mortality. Structural damages to the tegument of the parasites exposed to C. reticulata oleoresin were observed with scanning electron microscopy. At two hours of exposure, fish showed 100% tolerance to all nanoemulsion concentrations used in the in vitro assays, whereas 100% mortality was shown in the fish exposed to the oleoresin without nanoformulation after one hour. The results of this study suggest that nanoemulsions with oleoresin of C. reticulata have advantages in the control and treatment of monogenean infections in C. macropomum when compared to the oleoresin without nanoformulation. In addition, since nanoemulsions with the C. reticulata oleoresin are safe to control monogeneans, the efficacy of these nanoformulations may be assayed in therapeutic baths to treat C. macropomum infected by monogeneans.
The inhabitants of the floodplain of the Mazagão River in the State of Amapá in the Brazilian Amazon have inherited from indigenous African and Cabocla cultures indications for the use and forms of preparation of medicinal plants to cure diseases of the body and spirit. This study aimed to perform an ethnopharmacological survey of medicinal plants used by the riparian community of the floodplains of the Mazagão River, in the State of Amapá. In this study, we chose semistructured interviews with socioeconomic, ethnopharmacological, and ethnobotanical aims. The collection of medicinal plants occurred during guided tours. The Use Value (UV), Informant Consensus Factor (ICF), Correction Factor (CF), and Fidelity level (FL) were calculated. There were 130 species of medicinal plants, distributed in 116 genera and 57 families; Fabaceae (16), Lamiaceae (14), Euphorbiaceae (7), and Arecaceae (6) include 33.33% of the total species sampled. All 95 native species of floodplain forests were previously described, and 35 are exotic species. The species with the highest UV (≥ 0.5) at the mouth of the Mazagão River were Carapa guianensis (0.91), Pentachlethra macroloba (0.83), Dalbergia subcymosa (0.77), Uncaria tomentosa (0.75), Otacanthus azureus (0.62), Virola surinamensis (0.62), Hura crepitans (0.58), Euterpe oleracea (0.56), and Arrabidaea chica (0.51). These species were also the ones that presented the highest ICF among the informants and 100% in FL for a specific therapeutic use. The study is comprised of 16 categories of therapeutic use, of which the majority of the plants used are related to diseases such as microbial infections (20.67%, 73 species), gastrointestinal disorders (13.31%), and inflammation (11.61%). The results showed that knowledge about the use of medicinal plants along the rivers and streams that form the mouth of the Mazagão River is evenly distributed. Most of the interviewees present diversified knowledge about the medicinal resources because they have a close relationship with the floodplain forest. Native species of this forest predominate among the most commonly used medicinal plants as subsidies for future pharmacological studies.
Epilepsy is a chronic neurological disease characterized by excessive neuronal activity leading to seizure; about 30% of affected patients suffer from the refractory and pharmacoresistant form of the disease. The anticonvulsant drugs currently used for seizure control are associated with adverse reactions, making it important to search for more effective drugs with fewer adverse reactions. There is increasing evidence that endocannabinoids can pharmacologically modulate action against seizure and antiepileptic disorders. Therefore, the objective of this study is to investigate the anticonvulsant effects of fatty acid amides (FAAs) in a pentylenetetrazole (PTZ)-induced seizure model in mice. FAAs (FAA1 and FAA2) are obtained from Carapa guianensis oil by biocatalysis and are characterized by Fourier Transform Infrared Analysis (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS). Only FAA1 is effective in controlling the increased latency time of the first myoclonic jerk and in significantly decreasing the total duration of tonic-clonic seizures relative to the pentylenetetrazol model. Also, electrocortical alterations produced by pentylenetetrazol are reduced when treated by FAA1 that subsequently decreased wave amplitude and energy in Beta rhythm. The anticonvulsant effects of FAA1 are reversed by flumazenil, a benzodiazepine antagonist on Gamma-Aminobutyric Acid-A (GABA-A) receptors, indicating a mode of action via the benzodiazepine site of these receptors. To conclude, the FAA obtained from C. guianensis oil is promising against PTZ-induced seizures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.