The observed decrease of continental heat flow with tectonic age is interpreted in a three-component model. The first component is radiogenic heat from the zone of crustal isotopic enrichment, which yields about 40% of the observed heat flow in terrains of all tectonic ages. Because the surface heat flow varies with age between about 90 and 45 mW m -2 this radiogenic component also varies with age between about 36 and 18 mW m -2, a net decrease of some 18 mW m -2. The absolute decrease with time of this component is achieved by erosional removal of radioisotopes from the surface; the erosion, exponentially decreasing with age, has a characteristic time of some 300-400 Ma (m.y.B.P.). The second component of surface heat flow is residual heat from a transient thermal perturbation associated with tectogenesis. This transient yields approximately 30% of the heat flow (27 mW m -2) in Cenozoic tectonic zones, diminishing effectively to zero in late Precambrian to mid-Precambrian terrains. The decay of this component has been fitted with temperature perturbation models that show a maximum perturbation to a cool shield geotherm of 750ø-800øC
Geomagnetically induced currents (GICs) are a ground end manifestation of space weather processes. During large geomagnetic storms, GICs flow between the grounding points of power transformers and along electric power transmission lines connecting the transformers. In high‐latitude regions, damages to power transformers are reported where storm time geomagnetic variations are very rapid and large (>1000 nT), and hence the GICs as large as or even greater than 100 A end up flowing through the windings of power transformers. At low latitudes, geomagnetic variations are less severe, and hence much smaller GIC values are generally reported there. However, the flow of GICs and their effects on power transformers are complex processes, and careful evaluation is needed even in such low‐latitude regions as, for example, Brazil. We report here a study on GIC measurements in Brazil conducted under a cooperative project between FURNAS (the Brazilian electric power company) and the National Institute for Space Research. During a large geomagnetic storm, which took place on 7–10 November 2004, the GIC amplitudes, measured on the basis of geomagnetic variations in 500 kV power transmission lines in the S–E region of Brazil, were found to be around 15 A.
A large-scale array of long-period magnetic data and a deep-probing magnetotelluric profile were recorded in the intracratonic Paraná sedimentary basin in central eastern South America, which presents a thick and extensive sedimentary-magmatic sequence that allows its basement to be investigated only by indirect methods. Integration of the results from both methods showed that the crust beneath the basin presents several quasi-linear highly conductive channeled zones with limited lateral extent, in coincidence with some of the main tectonic structures recognized at the surface, and a moderate but pervasive lithosphere conductivity enhancement beneath its central part. Upward movement of CO 2 -bearing volatiles and magmas precipitating highly conducting mineral phases along discrete subvertical fault zones that served as feeder conduits for Early Cretaceous voluminous continental flood basalts was a likely process responsible for the localized conductivity enhancements. Correlation between some of the linear conductive zones and elongated magnetic anomalies and between the maximum depth occurrence of most of these conductive anomalies and the Curie depth at which crustal rocks lose their magnetism gives strong support to interconnected iron oxides (especially magnetite) and iron sulfides (such as pyrrhotite) as the main conductive sources. The moderate bulk conductivity increase in the crust and upper mantle beneath the central part of the basin is unexpected for a postulated cratonic basement and is tentatively associated with impregnation of the lithosphere by conducting minerals related either to widespread tectonic events in the Ordovician or Late Precambrian or to dispersed magmatic residues of an Early Cretaceous magma differentiation contaminating the entire lithosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.