Summary
Deposition of intracellular tau fibrils has been the focus of research on the mechanisms of neurodegeneration in Alzheimer’s disease (AD) and related tauopathies. Here, we developed a new class of tau ligands, phenyl/pyridinyl-butadienyl-benzothiazoles/benzothiazoliums (PBBs), for visualizing diverse tau inclusions in brains of living patients with AD or non-AD tauopathies and animal models of these disorders. In vivo optical and positron emission tomographic (PET) imaging of a transgenic mouse model demonstrated sensitive detection of tau inclusions by PBBs. A pyridinated PBB, [11C]PBB3 was next applied in a clinical PET study, and its robust signal in the AD hippocampus wherein tau pathology is enriched contrasted strikingly with that of a senile plaque radioligand, [11C]Pittsburgh Compound-B ([11C]PIB). [11C]PBB3-PET data were also consistent with the spreading of tau pathology with AD progression. Furthermore, increased [11C]PBB3 signals were found in a corticobasal syndrome patient negative for [11C]PIB-PET.
Manganese-enhanced MRI (MEMRI) is being increasingly used for MRI in animals due to the unique T 1 contrast that is sensitive to a number of biological processes. Three specific uses of MEMRI have been demonstrated: to visualize activity in the brain and the heart; to trace neuronal specific connections in the brain; and to enhance the brain cytoarchitecture after a systemic dose. Based on an ever-growing number of applications, MEMRI is proving useful as a new molecular imaging method to visualize functional neural circuits and anatomy as well as function in the brain in vivo. Paramount to the successful application of MEMRI is the ability to deliver Mn 2þ to the site of interest at an appropriate dose and in a time-efficient manner. A major drawback to the use of Mn 2þ as a contrast agent is its cellular toxicity. Therefore, it is critical to use as low a dose as possible. In the present work the different approaches to MEMRI are reviewed from a practical standpoint. Emphasis is given to the experimental methodology of how to achieve significant, yet safe, amounts of Mn 2þ to the target areas of interest.
Engineered nanoparticles that respond to pathophysiological parameters, such as pH or redox potential, have been developed as contrast agents for the magnetic resonance imaging (MRI) of tumours. However, beyond anatomic assessment, contrast agents that can sense these pathological parameters and rapidly amplify their magnetic resonance signals are desirable because they could potentially be used to monitor the biological processes of tumours and improve cancer diagnosis. Here, we report an MRI contrast agent that rapidly amplifies magnetic resonance signals in response to pH. We confined Mn(2+) within pH-sensitive calcium phosphate (CaP) nanoparticles comprising a poly(ethylene glycol) shell. At a low pH, such as in solid tumours, the CaP disintegrates and releases Mn(2+) ions. Binding to proteins increases the relaxivity of Mn(2+) and enhances the contrast. We show that these nanoparticles could rapidly and selectively brighten solid tumours, identify hypoxic regions within the tumour mass and detect invisible millimetre-sized metastatic tumours in the liver.
The rostromedial caudate (rmCD) of primates is thought to contribute to reward value processing, but a causal relationship has not been established. Here we use an inhibitory DREADD (Designer Receptor Exclusively Activated by Designer Drug) to repeatedly and non-invasively inactivate rmCD of macaque monkeys. We inject an adeno-associated viral vector expressing the inhibitory DREADD, hM4Di, into the rmCD bilaterally. To visualize DREADD expression in vivo, we develop a non-invasive imaging method using positron emission tomography (PET). PET imaging provides information critical for successful chemogenetic silencing during experiments, in this case the location and level of hM4Di expression, and the relationship between agonist dose and hM4Di receptor occupancy. Here we demonstrate that inactivating bilateral rmCD through activation of hM4Di produces a significant and reproducible loss of sensitivity to reward value in monkeys. Thus, the rmCD is involved in making normal judgments about the value of reward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.