The cardiac ATP-sensitive potassium (KATP) channel is thought to be a complex composed of an inward rectifier potassium channel (Kir6.1 and/or Kir6.2) subunit and the sulfonylurea receptor (SUR2). This channel is activated during myocardial ischemia and protects the heart from ischemic injury. We examined the transcriptional expression of these genes in rats with myocardial ischemia. 60 min of myocardial regional ischemia followed by 24-72 h, but not 3-6 h, of reperfusion specifically upregulated Kir6.1 mRNA not only in the ischemic (approximately 2.7-3.1-fold) but also in the nonischemic (approximately 2.0-2.6-fold) region of the left ventricle. 24 h of continuous ischemia without reperfusion also induced an increase in Kir6.1 mRNA in both regions, whereas 15-30 min of ischemia followed by 24 h of reperfusion did not induce such expression. In contrast, mRNAs for Kir6.2 and SUR2 remained unchanged under these ischemic procedures. Western blotting demonstrated similar increases in the Kir6.1 protein level both in the ischemic (2.4-fold) and the nonischemic (2.2-fold) region of rat hearts subjected to 60 min of ischemia followed by 24 h of reperfusion. Thus, prolonged myocardial ischemia rather than reperfusion induces delayed and differential regulation of cardiac KATP channel gene expression.
Background-We reported that digoxin abolishes the infarct size (IS)-limiting effect of ischemic preconditioning (IPC).Because ATP-sensitive K ϩ (K ATP ) channels are involved in IPC, we studied whether Na ϩ ,K ϩ -ATPase and K ATP channels functionally interact, thereby modulating IPC. Methods and Results-Rabbits received 30 minutes of coronary artery occlusion followed by 3 hours of reperfusion. IPC was elicited by 5 minutes of occlusion followed by 10 minutes of reperfusion. The IS, expressed as a percentage of the area at risk, was 40.2Ϯ2.8% in control and 39.8Ϯ5.0% in digoxin pretreatment rabbits. Both IPC and pretreatment with cromakalim, a K ATP channel opener, reduced IS to 11.8Ϯ1.8% and 13.4Ϯ2.6% (PϽ0.05 versus control). Digoxin abolished the reduction in IS induced by IPC (33.5Ϯ3.3%), whereas it did not change that induced by cromakalim (18.8Ϯ3.0%). In patch-clamp experiments, digoxin was found to inhibit the opening of K ATP channels in single ventricular myocytes in which ATP depletion had been induced by metabolic stress. In contrast, digoxin had little effect on the channel opening induced by cromakalim. Moreover, the inhibitory action of digoxin on channel activities was dependent on subsarcolemmal ATP concentration. Conclusions-The IS-limiting effect of IPC is modulated by an interaction between K ATP channels and Na ϩ ,K ϩ -ATPase through subsarcolemmal ATP. (Circulation. 1998;98:2905-2910.)
Calcium preconditioning (CPC), like ischemic preconditioning (IPC), reduces myocardial infarct size in dogs and rats. ATP-sensitive potassium (KATP) channels induce cardioprotection of IPC in these animals. To determine whether KATP channels mediate both IPC and CPC, pentobarbital sodium-anesthetized rabbits received 30 min of coronary artery occlusion followed by 180 min of reperfusion. IPC was elicited by 5 min of occlusion and 10 min of reperfusion, and CPC was elicited by two cycles of 5 min of calcium infusion with an interval period of 15 min. Infarct size expressed as a percentage of the area at risk was 38 ± 3% (mean ± SE) in controls. IPC, CPC, and pretreatment with a KATP channel opener, cromakalim, all reduced infarct size to 13 ± 2, 17 ± 2, and 12 ± 3%, respectively ( P < 0.01 vs. controls). Glibenclamide, a KATP channel blocker administered 45 min (but not 20 min) before sustained ischemia, attenuated the effects of IPC and CPC (31 ± 4 and 41 ± 6%, respectively). Thus KATP channel activation appears to contribute to these two types of cardioprotection in rabbits.
Preconditioning preserves the ischemia-induced reduction in sarcolemmal Na+,K+-ATPase activity in the early phase of ischemia in rabbit hearts. Inhibition of Na+,K+-ATPase activity reduces the infarct size-limiting effect of preconditioning with a loss of increased Na+-Ca2+ exchange activity, implying that this preservation is responsible for the cardioprotective effect of preconditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.