In 2013, we reported that local reninangiotensin system (local RAS) components express during the hypertrophic differentiation of chondrocytes and can modulate it, using ATDC5 cell line that involves differentiation from mesenchymal stem cells to calcified hypertrophic chondrocytes. However, the expressions of local RAS components in normal chondrocytes have not been revealed yet. The purpose of this study is to examine the expression of the local RAS components in chondrocytes in vivo and the conditions allowing the expression. We stained five major regions of 8-week-old C57BL/6 adult mice in which chondrocytes exist, including epiphyseal plates and hyaline cartilages, with antibodies to local RAS components. We also examined the expression of local RAS components in the cultured bovine’s articular cartilage chondrocytes using quantitative reverse transcription polymerase chain reaction and western blot analysis. In result, hypertrophic chondrocytes of epiphyseal plates included in the tibia and the lamina terminals expressed local RAS components. However, hyaline chondrocytes, including the knee articular cartilages, the parenchyma of nasal septums and of the tracheal walls, did not express local RAS components. Cultured bovine’s articular cartilage chondrocytes also did not express local RAS components. However, inducing hypertrophy by administering interleukin-1β or tumor necrosis factor-α, the cultured articular chondrocytes also expressed angiotensin II type 1 receptor and angiotensin II type 2 receptor. In conclusion, local RAS components express particularly in chondrocytes which occur hypertrophy and do not in hyaline chondrocytes. The results are in accord with our previous in vitro study. We think this novel knowledge is important to investigate cartilage hypertrophy and diseases induced by hypertrophic changes like osteoarthritis.
Epidemiological studies have shown an association between hypertension and knee osteoarthritis (OA). The purpose of this study was to investigate whether activation of the renin–angiotensin system (RAS) can aggravate mechanical loading-induced knee OA in mice. Eight-week-old male Tsukuba hypertensive mice (THM) and C57BL/6 mice were divided into four groups: i) running THM group, ii) running C57BL/6 mice group, iii) non-running THM group, and iv) non-running C57BL/6 mice group. Mice in the running group were forced to run (25 m/min, 30 min/day, 5 days/week) on a treadmill. All mice in the four groups (n=10 in each group) were euthanized after 0, 2, 4, 6, or 8 weeks of running or natural breeding. Cartilage degeneration in the left knees was histologically evaluated using the modified Mankin score. Expression of Col X, MMP-13, angiotensin type 1 receptor (AT1R), and AT2R was examined immunohistochemically. To study the effects of stimulation of the AT1R in chondrocytes by mechanical loading and/or Angiotensin II (AngII) on transduction of intracellular signals, phosphorylation levels of JNK and Src were measured in bovine articular chondrocytes cultured in three-dimensional agarose scaffolds. After 4 weeks, the mean Mankin score for the lateral femoral condylar cartilage was significantly higher in the THM running group than in the C57BL/6 running group and non-running groups. AT1R and AT2R expression was not detected at 0 weeks in any group but was noted after 4 weeks in the THM running group. AT1R expression was also noted at 8 weeks in the C57BL/6 running group. The expression levels of AT1R, COL X, and MMP-13 in chondrocytes were significantly higher in the THM running group than in the control groups. Positive significant correlations were noted between the Mankin score and the rate of AT1R-immunopositive cells, between the rates of AT1R- and Col X-positive cells, and between the rates of AT1Rand AT2R-positive cells. The phosphorylation level of JNK was increased by cyclic compression loading or addition of AngII to the cultured chondrocytes and was reversed by pretreatment with an AT1R blocker. A synergistic effect on JNK phosphorylation was observed between compression loading and AngII addition. Transgene activation of renin and angiotensinogen aggravated mechanical load-induced knee OA in mice. These findings suggest that AT1R expression in chondrocytes is associated with early knee OA and plays a role in the progression of cartilage degeneration. The RAS may be a common molecular mechanism involved in the pathogenesis of hypertension and knee OA.
A local tissue-specific renin–angiotensin system (local RAS) has been identified in many organs. However, no report has described the role of a local RAS in the hypertrophic differentiation of chondrocytes. To examine the role of a local RAS in the hypertrophic differentiation, we activated angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) separately in the cell line ATDC5, which involves differentiation from mesenchymal stem cells to hypertrophic chondrocytes. Activation of AT1R suppressed and activation of AT2R enhanced the expression of markers of hypertrophic differentiation, including type X collagen, matrix metalloproteinase 13 and runt-related transcription factor 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.