Purpose: The aberrant expression of programmed cell death 1ligands 1and 2 (PD-Ls) on tumor cells dampens antitumor immunity, resulting in tumor immune evasion. In this study, we investigated the expression of PD-Ls in human hepatocellular carcinoma (HCC) to define their prognostic significance after curative surgery. Experimental Design: Immunohistochemistry was used to investigate PD-Ls expression as well as granzyme B + cytotoxic and FoxP3 + regulatory T cell infiltration on tissue microarrays containing 240 randomly selected HCC patients who underwent surgery. The results were further verified in an independent cohort of 125 HCC patients. PD-Ls expression on HCC cell lines was detected by Western blot assay. Results: Patients with higher expression of PD-L1 had a significantly poorer prognosis than patients with lower expression. Although patients with higher expression of PD-L2 also had a poorer survival, the difference in recurrence was not statistically significant. Multivariate analysis identified tumor expression of PD-L1 as an independent predictor for postoperative recurrence. No correlation was found between PD-Ls expression and granzyme B + lymphocyte infiltration, whereas a significant positive correlation was detected between PD-Ls expression and FoxP3 + lymphocyte infiltration. In addition, tumor-infiltrating cytotoxic and regulatory T cells were also independent prognosticators for both survival and recurrence. The prognostic value of PD-L1 expression was validated in the independent data set. Conclusion: Our data suggest for the first time that PD-L1 status may be a new predictor of recurrence for HCC patients and provide the rationale for developing a novel therapy of targeting the PD-L1/PD-1pathway against this fatal malignancy.
The membrane rotor ring from the vacuolar-type (V-type) sodium ion-pumping adenosine triphosphatase (Na+-ATPase) from Enterococcus hirae consists of 10 NtpK subunits, which are homologs of the 16-kilodalton and 8-kilodalton proteolipids found in other V-ATPases and in F1Fo- or F-ATPases, respectively. Each NtpK subunit has four transmembrane alpha helices, with a sodium ion bound between helices 2 and 4 at a site buried deeply in the membrane that includes the essential residue glutamate-139. This site is probably connected to the membrane surface by two half-channels in subunit NtpI, against which the ring rotates. Symmetry mismatch between the rotor and catalytic domains appears to be an intrinsic feature of both V- and F-ATPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.