Due to the extremely high affinity of selenium (Se) to mercury (Hg), Se sequesters Hg and reduces its biological availability in organisms. However the converse is also true. Hg sequesters Se, causing Hg to inhibit the formation of Se dependent enzymes while supplemental Se supports their continued synthesis. Hence, whether or not toxic effects accompany exposure to Hg depends upon the tissue Se:Hg molar ratio of the organism. The main objective of the present study was to investigate how levels of Hg and Se affected metallothionein (MT) induction in free-ranging brown trout, Salmo trutta, from Lake Mjøsa, Norway (a Se depauperate lake). MT is proposed as a sensitive biomarker of potential detrimental effects induced by metals such as Hg. Emphasis was addressed to elucidate if increased tissue Se:Hg molar ratios and Se levels affected the demands for MT in the trout. The Se:Hg molar ratio followed by tissue Se levels were most successful for assessing the relationship between metal exposure and MT levels in the trout. Thus, Hg in molar excess over Se was a stronger inducer of MT synthesis than tissue Hg levels in the trout, supporting the assumption that Se has a prominent protective effect against Hg toxicity. Measuring Hg in animals may therefore provide an inadequate reflection of the potential health risks to humans and wildlife if the protective effects of Se are not considered.
The rates of ingestion of oil microdroplets and oil fouling were investigated in the zooplankton filter-feeder Calanus finmarchicus (Gunnerus, 1770) at 3 concentrations of oil dispersions ranging from 0.25 mg/L to 5.6 mg/L. To compare responses to mechanically and chemically dispersed oil, the copepods were exposed to comparable dispersions of micron-sized oil droplets made with and without the use of a chemical dispersant (similar oil droplet size range and oil concentrations) together with a constant supply of microalgae for a period of 4 d. The filtration rates as well as accumulation of oil droplets decreased with increasing exposure concentration. Thus the estimated total amount of oil associated with the copepod biomass for the 2 lowest exposures in the range 11 mL/kg to 17 mL/kg was significantly higher than the approximately 6 mL/kg found in the highest exposure. For the 2 lowest concentrations the filtration rates were significantly higher in the presence of chemical dispersant. Furthermore, a significant increase in the amount of accumulated oil in the presence of dispersant was observed in the low exposure group.
The objectives of this study were to (1) determine the acute toxicity of selected shoreline washing agents (SWA) and dispersants, and (2) assess interspecies differences in sensitivity to the products. Eight shoreline washing agents (Hela saneringsvæske, Bios, Bioversal, Absorrep K212, and Corexit 9580) and chemical dispersants (Corexit 9500, Dasic NS, and Gamlen OD4000) were tested on five marine species, algae Skeletonema costatum, planktonic copepod species Acartia tonsa (temperate species), Calanus finmarchicus (boreal species) and Calanus glacialis (Arctic species), and benthic amphipod Corophium volutator. For most products, A. tonsa was the most sensitive species, whereas C. volutator was the least sensitive; however, these species were exposed through different media (water/sediment). In general, all copepod species displayed a relatively similar sensitivity to all products. However, A. tonsa was somewhat more sensitive than other copepods to most of the tested products. Thus, A. tonsa appears to be a candidate species for boreal and Arctic copepods for acute toxicity testing, and data generated on this species may be used as to provide conservative estimates. The benthic species (C. volutator) had a different sensitivity pattern relative to pelagic species, displaying higher sensitivity to solvent-based SWA than to water-based SWA. Comparing product toxicity, the dispersants were in general most toxic while the solvent-based SWA were least toxic to pelagic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.