Basal-like tumours account for 15% of invasive breast carcinomas and are associated with a poorer prognosis and resistance to therapy. We hypothesised that this aggressive phenotype is because of an intrinsically elevated hypoxic response. Microarrayed tumours from 188 patients were stained for hypoxia-inducible factor (HIF)-1a, prolyl hydroxylase (PHD)1, PHD2, PHD3 and factor inhibiting HIF (FIH)-1, and carbonic anhydrase (CA) IX stained in 456 breast tumours. Tumour subtypes were correlated with standard clincopathological parameters as well as hypoxic markers. Out of 456 tumours 62 (14%) tumours were basal-like. These tumours were positively correlated with high tumour grade (Po0.001) and were associated with a significantly worse disease-free survival compared with luminal tumours (Po0.001). Fifty percent of basal-like tumours expressed HIF-1a, and more than half expressed at least one of the PHD enzymes and FIH-1. Basal-like tumours were nine times more likely to be associated with CAIX expression (Po0.001) in a multivariate analysis. Carbonic anhydrase IX expression was positively correlated with tumour size (P ¼ 0.005), tumour grade (Po0.001) and oestrogen receptor (ER) negativity (Po0.001). Patients with any CAIX-positive breast tumour phenotype and in the basal tumour group had a significantly worse prognosis than CAIX-negative tumours when treated with chemotherapy (Po0.001 and P ¼ 0.03, respectively). The association between basal phenotype and CAIX suggests that the more aggressive behaviour of these tumours is partly due to an enhanced hypoxic response. Further, the association with chemoresistance in CAIX-positive breast tumours and basal-like tumours in particular raises the possibility that targeted therapy against HIF pathway or downstream genes such as CAs may be an approach to investigate for these patients.
DNA methylation based biomarkers have considerable potential for molecular diagnostics, both as tumor specific biomarkers for the early detection or post-therapeutic monitoring of cancer as well as prognostic and predictive biomarkers for therapeutic stratification. Particularly in the former, the accurate estimation of DNA methylation is of compelling importance. However, quantification of DNA methylation has many traps for the unwary, especially when heterogeneous methylation comprising multiple alleles with varied DNA methylation patterns (epialleles) is present. The frequent occurrence of heterogeneous methylation as distinct from a simple mixture of fully methylated and unmethylated alleles is generally not taken into account when DNA methylation is considered as a cancer biomarker. When heterogeneous DNA methylation is present, the proportion of methylated molecules is difficult to quantify without a method that allows the measurement of individual epialleles. In this article, we critically assess the methodologies frequently used to investigate DNA methylation, with an emphasis on the detection and measurement of heterogeneous DNA methylation. The adoption of digital approaches will enable the effective use of heterogeneous DNA methylation as a cancer biomarker.
Heterogeneous DNA methylation leads to difficulties in accurate detection and quantification of methylation. Methylation-sensitive high resolution melting (MS-HRM) is unique among regularly used methods for DNA methylation analysis in that heterogeneous methylation can be readily identified, although not quantified, by inspection of the melting curves. Bisulfite pyrosequencing has been used to estimate the level of heterogeneous methylation by quantifying methylation levels present at individual CpG dinucleotides. Sequentially combining the two methodologies using MS-HRM to screen the amplification products prior to bisulfite pyrosequencing would be advantageous. This would not only replace the quality control step using agarose gel analysis prior to the pyrosequencing step but would also provide important qualitative information in its own right. We chose to analyze DAPK1 as it is an important tumor suppressor gene frequently heterogeneously methylated in a number of malignancies, including chronic lymphocytic leukemia (CLL). A region of the DAPK1 promoter was analyzed in ten CLL samples by MS-HRM. By using a biotinylated primer, bisulfite pyrosequencing could be used to directly analyze the samples. MS-HRM revealed the presence of various extents of heterogeneous DAPK1 methylation in all CLL samples. Further analysis of the biotinylated MS-HRM products by bisulfite pyrosequencing provided quantitative information for each CpG dinucleotide analyzed, and confirmed the presence of heterogeneous DNA methylation. Whereas each method could be used individually, MS-HRM and bisulfite pyrosequencing provided complementary information for the assessment of heterogeneous methylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.