In the past 40 years, scientific research has shown how Whole Body Vibration concept represents a strong stimulus for the whole organism. Low (<30 Hz), medium (30–80 Hz), and high (>80 Hz) frequency vibrations can have both positive and negative effects, depending on the oscillation type and duration of exposure to which the body is subjected. However, very little is known about the effects of vibratory training on the brain. In this regard, we verified whether three vibratory training protocols, differing in terms of vibration frequency and exposure time to vibration, could modulate synaptic plasticity in an experimental mouse model, by extracellular recordings in vitro in hippocampal slices of mice of 4 and 24 months old. Our results showed that vibratory training can modulate synaptic plasticity differently, depending on the protocol used, and that the best effects are related to the training protocol characterized by a low vibration frequency and a longer recovery time. Future studies will aim to understand the brain responses to various types of vibratory training and to explore the underlying mechanisms, also evaluating the presence of any structural and functional changes due to vibratory training.
Bone and muscle tissues influence each other through the integration of mechanical and biochemical signals, giving rise to bone–muscle crosstalk. They are also known to secrete osteokines, myokines, and cytokines into the circulation, influencing the biological and pathological activities in local and distant organs and cells. In this regard, even osteoporosis and sarcopenia, which were initially thought to be two independent diseases, have recently been defined under the term “osteosarcopenia”, to indicate a synergistic condition of low bone mass with muscle atrophy and hypofunction. Undoubtedly, osteosarcopenia is a major public health concern, being associated with high rates of morbidity and mortality. The best current defence against osteosarcopenia is prevention based on a healthy lifestyle and regular exercise. The most appropriate type, intensity, duration, and frequency of exercise to positively influence osteosarcopenia are not yet known. However, combined programmes of progressive resistance exercises, weight-bearing impact exercises, and challenging balance/mobility activities currently appear to be the most effective in optimising musculoskeletal health and function. Based on this evidence, the aim of our review was to summarize the current knowledge about the role of exercise in bone–muscle crosstalk, highlighting how it may represent an effective alternative strategy to prevent and/or counteract the onset of osteosarcopenia.
Amyloid protein misfolding results in a self-assembling aggregation process, characterized by the formation of typical aggregates. The attention is focused on pre-fibrillar oligomers (PFOs), formed in the early stages and supposed to be neurotoxic. PFOs structure may change due to their instability and different experimental protocols. Consequently, it is difficult to ascertain which aggregation species are actually neurotoxic. We used salmon Calcitonin (sCT) as an amyloid model whose slow aggregation rate allowed to prepare stable samples without photochemical cross-linking. Intracellular Ca2+ rise plays a fundamental role in amyloid protein-induced neurodegerations. Two paradigms have been explored: (i) the “membrane permeabilization” due to the formation of amyloid pores or other types of membrane damage; (ii) “receptor-mediated” modulation of Ca2+ channels. In the present paper, we tested the effects of native sCT PFOs- with respect to Monomer-enriched solutions in neurons characterized by an increasing degree of differentiation, in terms of -Ca2+-influx, cellular viability, -Long-Term Potentiation impairment, Post-Synaptic Densities and synaptophysin expression. Results indicated that PFOs-, but not Monomer-enriched solutions, induced abnormal -Ca2+-influx, which could only in part be ascribed to NMDAR activation. Thus, we propose an innovative neurotoxicity mechanism for amyloid proteins where “membrane permeabilization” and “receptor-mediated” paradigms coexist.
Scientific evidence has demonstrated the power of physical exercise in the prevention and treatment of numerous chronic and/or age-related diseases, such as musculoskeletal, metabolic, and cardiovascular disorders. In addition, regular exercise is known to play a key role in the context of neurodegenerative diseases, as it helps to reduce the risk of their onset and counteracts their progression. However, the underlying molecular mechanisms have not yet been fully elucidated. In this regard, neurotrophins, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glia cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been suggested as key mediators of brain health benefits, as they are involved in neurogenesis, neuronal survival, and synaptic plasticity. The production of these neurotrophic factors, known to be increased by physical exercise, is downregulated in neurodegenerative disorders, suggesting their fundamental importance in maintaining brain health. However, the mechanism by which physical exercise promotes the production of neurotrophins remains to be understood, posing limits on their use for the development of potential therapeutic strategies for the treatment of neurodegenerative diseases. In this literature review, we analyzed the most recent evidence regarding the relationship between physical exercise, neurotrophins, and brain health, providing an overview of their involvement in the onset and progression of neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.