We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, forcing their convergence to the same, possibly random, limit. Random walks of this form have been introduced in the context of urn models and in stochastic algorithms. We also propose an application to opinion dynamics in a random network evolving via preferential attachment. We study, in particular, random walks interacting through a mean-field rule and compare the rate they converge to their limit with the rate of synchronization, i.e. the rate at which their mutual distances converge to zero. Under certain conditions, synchronization is faster than convergence.
We consider a model of N two-colors urns in which the reinforcement of each urn depends also on the content of all the other urns. This interaction is of mean-field type and it is tuned by a parameter α ∈ [0, 1]; in particular, for α = 0 the N urns behave as N independent Pólya's urns. For α > 0 urns synchronize, in the sense that the fraction of balls of a given color converges a.s. to the same (random) limit in all urns. In this paper we study fluctuations around this synchronized regime. The scaling of these fluctuations depends on the parameter α. In particular the standard scaling t −1/2 appears only for α > 1/2. For α ≥ 1/2 we also determine the limit distribution of the rescaled fluctuations. We use the notion of stable convergence, which is stronger than convergence in distribution.
We consider a system of urns of Pólya type, containing balls of two colors; the reinforcement of each urn depends on both the content of the urn and the average content of all urns. We show that the urns synchronize almost surely, in the sense that the fraction of balls of a given color converges almost surely as time tends to ∞ to the same limit for all urns. A normal approximation for a large number of urns is also obtained.
We investigate a class of models for opinion dynamics in a population with two interacting families of individuals. Each family has an intrinsic mean field "Voter-like" dynamics which is influenced by interaction with the other family. The interaction terms describe a cooperative/conformist or competitive/nonconformist attitude of one family with respect to the other. We prove chaos propagation, i.e., we show that on any time interval [0, T ], as the size of the system goes to infinity, each individual behaves independently of the others with transition rates driven by a macroscopic equation. We focus in particular on models with Lotka-Volterra type interactions, i.e., models with cooperative vs. competitive families. For these models, although the microscopic system is driven a.s. to consensus within each family, a periodic behaviour arises in the macroscopic scale. In order to describe fluctuations between the limiting periodic orbits, we identify a slow variable in the microscopic system and, through an averaging principle, we find a diffusion which describes the macroscopic dynamics of such variable on a larger time scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.