Pheochromocytomas (PCC) and abdominal paragangliomas (PGL) display a highly diverse genetic background and recent gene expression profiling studies have shown that PCC and PGL (together PPGL) alter either kinase signaling pathways or the pseudo‐hypoxia response pathway dependent of the genetic composition. Recurrent mutations in the Harvey rat sarcoma viral oncogene homolog (HRAS) have recently been verified in sporadic PPGLs. In order to further establish the HRAS mutation frequency and to characterize the associated expression profiles of HRAS mutated tumors, 156 PPGLs for exon 2 and 3 hotspot mutations in the HRAS gene was screened, and compared with microarray‐based gene expression profiles for 93 of the cases. The activating HRAS mutations G13R, Q61R, and Q61K were found in 10/142 PCC (7.0%) and a Q61L mutation was revealed in 1/14 PGL (7.1%). All HRAS mutated cases included in the mRNA expression profiling grouped in Cluster 2, and 21 transcripts were identified as altered when comparing the mutated tumors with 91 HRAS wild‐type PPGL. Somatic HRAS mutations were not revealed in cases with known PPGL susceptibility gene mutations and all HRAS mutated cases were benign. The HRAS mutation prevalence of all PPGL published up to date is 5.2% (49/950), and 8.8% (48/548) among cases without a known PPGL susceptibility gene mutation. The findings support a role of HRAS mutations as a somatic driver event in benign PPGL without other known susceptibility gene mutations. HRAS mutated PPGL cluster together with NF1‐ and RET‐mutated tumors associated with activation of kinase‐signaling pathways. © 2016 The Authors Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.
Glioblastoma multiforme (GBM) continues to have a dismal prognosis. Even though detailed information on the genetic aberrations in cell signaling and cell cycle checkpoint control is available, no effective targeted treatment has been developed. Despite the advanced molecular defects, glioblastoma cells may have remnants of normal growth inhibitory pathways, such as the bone morphogenetic protein (BMP) signaling pathway. We have evaluated the growth inhibitory effect of BMP4 across a broad spectrum of patient samples, using a panel of 40 human glioblastoma initiating cell (GIC) cultures. A wide range of responsiveness was observed. BMP4 sensitivity was positively correlated with a proneural mRNA expression profile, high SOX2 activity, and BMP4-dependent up-regulation of genes associated with inhibition of the MAPK pathway, as demonstrated by gene set enrichment analysis (GSEA). BMP4 response in sensitive cells was mediated by the canonical BMP receptor pathway involving SMAD1/5/9 phosphorylation and SMAD4 expression. SOX2 was consistently down-regulated in BMP4treated cells. Forced expression of SOX2 attenuated the BMP4 sensitivity including a reduced upregulation of MAPK inhibitory genes, implying a functional relationship between SOX2 downregulation and sensitivity. The results show an extensive heterogeneity in BMP4 responsiveness among GICs, and identify a BMP4 sensitive subgroup, in which SOX2 is a mediator of the response. Implications: Development of agonists targeting the BMP signaling pathway in glioblastoma is an attractive avenue towards a better treatment-our study may help find biomarkers that predict the outcome of such treatment and enable stratification of patients.
Metastatic brain tumors continue to be a clinical problem, despite new therapeutic advances in cancer treatment. Brain metastases (BMs) are among the most common mass lesions in the brain that are resistant to chemotherapies, have a very poor prognosis, and currently lack any efficient diagnostic tests. Predictions estimate that about 40% of lung and breast cancer patients will develop BM. Despite this, very little is known about the immunological and genetic aberrations that drive tumorigenesis in BM. In this study, we demonstrate the infiltration of mast cells (MCs) in a large cohort of human BM samples with different tissues of origin for primary cancer. We applied patient-derived BM cell models to the study of BM cell–MC interactions. BM cells when cocultured with MCs demonstrate enhanced growth and self-renewal capacity. Gene set enrichment analyses indicate increased expression of signal transduction and transmembrane proteins related genes in the cocultured BM cells. MCs exert their effect by release of mediators such as IL-8, IL-10, matrix metalloprotease 2, and vascular endothelial growth factor, thereby permitting metastasis. In conclusion, we provide evidence for a role of MCs in BM. Our findings indicate MCs’ capability of modulating gene expression in BM cells and suggest that MCs can serve as a new target for drug development against metastases in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.