Galectins and their ligands have been implicated in cell transformation and cancer metastasis, and found to have prognostic value. Mac-2 BP, also known as 90K, is a highly glycosylated, secreted protein extensively studied in human cancer, which binds galectin-1, galectin-3 and galectin-7. High expression levels of 90K are associated with a shorter survival, the occurrence of metastasis or a reduced response to chemotherapy in patients with different types of malignancy. The mechanisms underlying the prognostic significance of 90K and galectins in cancer are far from being understood, although they may be related to the ability of these proteins to interact and, to some extent, modulate cell-cell and cell-matrix adhesion and apoptosis. The resulting scenario is even more complex, as data have been presented that all these proteins might be associated with either a positive or a negative outcome of the patients. It is hypothesised that different galectins and galectin ligands with overlapping or opposite functions, expressed in different tumors during the different steps of the metastatic cascade might play a crucial role in tumor progression.
The circadian timing system and the cell division cycle are frequently deregulated in cancer. The therapeutic relevance of the reciprocal interactions between both biological rhythms was investigated using Seliciclib, a cyclin-dependent kinase (CDK) inhibitor (CDKI). Mice bearing Glasgow osteosarcoma received Seliciclib (300 mg/kg/d orally) or vehicle for 5 days at Zeitgeber time (ZT) 3, 11, or 19. On day 6, tumor mRNA 24-hour expression patterns were determined for clock genes (Per2, Rev-erba, and Bmal1) and clock-controlled cell cycle genes (c-Myc, Wee1, cyclin B1, and CDK1) with quantitative reverse transcription-PCR. Affinity chromatography on immobilized Seliciclib identified CDK1/CDK2 and extracellular signal-regulated kinase (ERK) 1/ERK2, CDK7/CDK9, and casein kinase CK1E as Seliciclib targets, which respectively regulate cell cycle, transcription, and circadian clock in Glasgow osteosarcoma. Seliciclib reduced tumor growth by 55% following dosing at ZT3 or ZT11 and by 35% at ZT19 compared with controls (P < 0.001). Tolerability was also best at ZT3. Mean transcriptional activity of Rev-erba, Per2, and Bmal1 was arrhythmic in the tumors of untreated mice. Seliciclib induced rhythmic clock gene expression patterns with physiologic phase relations only after ZT3 dosing. c-Myc and Wee1 mRNAs displayed synchronous circadian rhythms in the tumors of control mice receiving vehicle only but not in those of mice given the drug. Seliciclib further enhanced Wee1 expression irrespective of dosing time, an effect that reinforced G 2 -M gating. Seliciclib also inhibited CK1E, which determines circadian period length. The coordination of clock gene expression patterns in tumor cells was associated with best antitumor activity of Seliciclib. The circadian clock and its upstream regulators represent relevant targets for CDKIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.