DUX4 has recently been recognized as a key regulator in human embryonic genome activation (EGA). The exact role of DUX4 in human embryo is still elusive, partly due to the cytotoxicity of persistent DUX4 expression in cellular models. We report here that a transient DUX4 expression in human embryonic stem cells (hESCs) retains cell viability while inducing an EGA-like expression program in a subpopulation of the cells. These cells showed resemblance to 8-cell stage blastomeres and were thus named induced blastomere-like (iBM) cells. Trajectory inference from the single-cell RNA-seq data suggested that the expression profile of these cells progressed in a manner similar to the morula to blastocyst transition in human embryo. Finally, viable iBM cells could be enriched using an antibody against NaPi2b (SLC34A2), paving the way for further experimental approaches. The iBM cells can become a powerful tool to model transcriptional dynamics and regulation during early human embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.