Background
Obesity confers adverse effects to every system in the body including the central nervous system. Obesity is associated with both migraine and idiopathic intracranial hypertension (IIH). The mechanisms underlying the association between obesity and these headache diseases remain unclear.
Methods
We conducted a narrative review of the evidence in both humans and rodents, for the putative mechanisms underlying the link between obesity, migraine and IIH.
Results
Truncal adiposity, a key feature of obesity, is associated with increased migraine morbidity and disability through increased headache severity, frequency and more severe cutaneous allodynia. Obesity may also increase intracranial pressure and could contribute to headache morbidity in migraine and be causative in IIH headache. Weight loss can improve both migraine and IIH headache. Preclinical research highlights that obesity increases the sensitivity of the trigeminovascular system to noxious stimuli including inflammatory stimuli, but the underlying molecular mechanisms remain unelucidated.
Conclusions
This review highlights that at the epidemiological and clinical level, obesity increases morbidity in migraine and IIH headache, where weight loss can improve headache morbidity. However, further research is required to understand the molecular underpinnings of obesity related headache in order to generate novel treatments.
Elevated intracranial pressure (ICP) is observed in many brain disorders. Obesity has been linked to ICP pathogenesis in disorders such as idiopathic intracranial pressure (IIH). We investigated the effect of diet induced obesity (DIO) on ICP and clinically relevant sequelae. Rats were fed either a control or high fat diet. Following weight gain long term ICP, headache behavior, body composition and retinal outcome were examined. Post-hoc analysis of retinal histology and molecular analysis of choroid plexus and trigeminal ganglion (TG) were performed. DIO rats demonstrated raised ICP by 55% which correlated with the abdominal fat percentage and increased non-respiratory slow waves, suggestive of altered cerebral compliance. Concurrently, DIO rats demonstrated a specific cephalic cutaneous allodynia which negatively correlated with the abdominal fat percentage. This sensitivity was associated with increased expression of headache markers in TG. Additionally, DIO rats had increased retinal nerve fiber layer thickness in vivo associated with raised ICP with a subsequent post-hoc demonstration of neuroretinal degeneration. This study demonstrates for the first time that DIO leads to raised ICP and subsequent clinically relevant symptom development. This novel model of non-traumatic raised ICP could expand the knowledge regarding disorders with elevated ICP such as IIH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.