BackgroundAutopsy of sudden cardiac death (SCD) in the young shows a structurally and histologically normal heart in about one third of cases. Sudden death in these cases is believed to be attributed in a high percentage to inherited arrhythmogenic diseases. The purpose of this study was to investigate the value of performing post-mortem genetic analysis for autopsy-negative sudden unexplained death (SUD) in 1 to 35 year olds.Methods and resultsFrom January 2009 to December 2011, samples from 15 cases suffering SUD were referred to the Department of Clinical Genetics, Umeå University Hospital, Sweden, for molecular genetic evaluation. PCR and bidirectional Sanger sequencing of genes important for long QT syndrome (LQTS), short QT syndrome (SQTS), Brugada syndrome type 1 (BrS1), and catecholaminergic polymorphic ventricular tachycardia (CPVT) (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, and RYR2) was performed. Multiplex ligation-dependent probe amplification (MLPA) was used to detect large deletions or duplications in the LQTS genes. Six pathogenic sequence variants (four LQTS and two CPVT) were discovered in 15 SUD cases (40 %). Ten first-degree family members were found to be mutation carriers (seven LQTS and three CPVT).ConclusionCardiac ion channel genetic testing in autopsy-negative sudden death victims has a high diagnostic yield, with identification of the disease in 40 % of families. First-degree family members should be offered predictive testing, clinical evaluation, and treatment with the ultimate goal to prevent sudden death.
Purpose: Fuchs' endothelial corneal dystrophy (FECD) has been considered a genetically heterogeneous disease but is increasingly associated with the transcription factor 4 (TCF4) gene. This study investigates the prevalence of the cytosine-thymine-guanine (CTG) n repeat expansion in TCF4 among FECD patients in northern Sweden coupled to the phenotype. Methods: Blood samples were collected from 85 FECD cases at different stages. Short tandem repeat PCR and triplet repeat-primed PCR were applied in order to determine TCF4 (CTG) n genotype. Results: A (CTG) n repeat expansion (n > 50) in TCF4 was identified in 76 of 85 FECD cases (89.4%) and in four of 102 controls (3.9%). The median (CTG) n repeat length was 81 (IQR 39.3) in mild FECD and 87 (IQR 13.0) in severe FECD (p = 0.01). A higher number of (CTG) n repeats in an expanded TCF4 allele increased the probability of severe FECD. Other ocular surgery was overrepresented in FECD cases without a (CTG) n repeat expansion (44.4%, n = 4) compared with 3.9% (n = 3) in FECD cases with an (CTG) n repeat expansion (p < 0.001). Conclusion:In northern Sweden, the FECD phenotype is associated with (CTG) n expansion in the TCF4 gene, with nearly 90% of patients being heteroor homozygous for (CTG) n expansion over 50 repeats. Furthermore, the severity of FECD was associated with the repeat length in the TCF4 gene. Ocular surgery might act as an environmental factor explaining the clinical disease in FECD without a repeat expansion in TCF4.
Two intronic variants c.4773+3A>G and c.5461-10T>C, both predicted to affect splicing, are indeed disease-causing mutations due to skipping of exons 33, 34, 39 and 40 of ABCA4 gene. The experimental proof that ABCA4 mutations in STGD patients affect protein function is crucial for their inclusion to future clinical trials; therefore, functional testing of all ABCA4 intronic variants associated with Stargardt disease by minigene technology is desirable.
Fuchs’ endothelial corneal dystrophy (FECD) is a bilateral disease of the cornea caused by gradual loss of corneal endothelial cells. Late-onset FECD is strongly associated with the CTG18.1 trinucleotide repeat expansion in the Transcription Factor 4 gene (TCF4), which forms RNA nuclear foci in corneal endothelial cells. To date, 46 RefSeq transcripts of TCF4 are annotated by the National Center of Biotechnology information (NCBI), however the effect of the CTG18.1 expansion on expression of alternative TCF4 transcripts is not completely understood. To investigate this, we used droplet digital PCR for quantification of TCF4 transcripts spanning over the CTG18.1 and transcripts with transcription start sites immediately downstream of the CTG18.1. TCF4 expression was analysed in corneal endothelium and in whole blood of FECD patients with and without CTG18.1 expansion, in non-FECD controls without CTG18.1 expansion, and in five additional control tissues. Subtle changes in transcription levels in groups of TCF4 transcripts were detected. In corneal endothelium, we found a lower fraction of transcripts spanning over the CTG18.1 tract compared to all other tissues investigated.
BackgroundSequence variants in the NOS1AP gene have repeatedly been reported to influence QTc, albeit with moderate effect sizes. In the long QT syndrome (LQTS), this may contribute to the substantial QTc variance seen among carriers of identical pathogenic sequence variants. Here we assess three non-coding NOS1AP sequence variants, chosen for their previously reported strong association with QTc in normal and LQTS populations, for association with QTc in two Swedish LQT1 founder populations.MethodsThis study included 312 individuals (58% females) from two LQT1 founder populations, whereof 227 genotype positive segregating either Y111C (n = 148) or R518* (n = 79) pathogenic sequence variants in the KCNQ1 gene, and 85 genotype negatives. All were genotyped for NOS1AP sequence variants rs12143842, rs16847548 and rs4657139, and tested for association with QTc length (effect size presented as mean difference between derived and wildtype, in ms), using a pedigree-based measured genotype association analysis. Mean QTc was obtained by repeated manual measurement (preferably in lead II) by one observer using coded 50 mm/s standard 12-lead ECGs.ResultsA substantial variance in mean QTc was seen in genotype positives 476 ± 36 ms (Y111C 483 ± 34 ms; R518* 462 ± 34 ms) and genotype negatives 433 ± 24 ms. Female sex was significantly associated with QTc prolongation in all genotype groups (p < 0.001). In a multivariable analysis including the entire study population and adjusted for KCNQ1 genotype, sex and age, NOS1AP sequence variants rs12143842 and rs16847548 (but not rs4657139) were significantly associated with QT prolongation, +18 ms (p = 0.0007) and +17 ms (p = 0.006), respectively. Significant sex-interactions were detected for both sequent variants (interaction term r = 0.892, p < 0.001 and r = 0.944, p < 0.001, respectively). Notably, across the genotype groups, when stratified by sex neither rs12143842 nor rs16847548 were significantly associated with QTc in females (both p = 0.16) while in males, a prolongation of +19 ms and +8 ms (p = 0.002 and p = 0.02) was seen in multivariable analysis, explaining up to 23% of QTc variance in all males.ConclusionsSex was identified as a moderator of the association between NOS1AP sequence variants and QTc in two LQT1 founder populations. This finding may contribute to QTc sex differences and affect the usefulness of NOS1AP as a marker for clinical risk stratification in LQTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.