WOSInternational audiencePolymer matrix composites, and especially short glass fibre reinforced polyamides, are widely used in the automotive industry. Their application on structural components requires a confident mechanical design taking into account the sensitivity of the mechanical response to both temperature T and relative humidity H. In this paper, the constitutive model already developed by the authors (Launay et al., 2011) is applied to describe the non-linear time-dependent behaviour of a PA66-GF35 under various hygrothermal conditions. The extensive experimental database involves testing conditions under and above the glass transition temperature Tg. An equivalence principle between temperature and relative humidity is applied and validated, since the non-linear mechanical response is shown to depend only on the temperature gap T-Tg(H)
a b s t r a c tComponents made of short glass fiber reinforced (SGFR) thermoplastics are increasingly used in the automotive industry, and more frequently subjected to fatigue loadings during their service life. The determination of a predictive fatigue criterion is therefore a serious issue for the designers, and requires the knowledge of the local mechanical response under a large range of environmental conditions (temperature and relative humidity). As the cyclic behavior of polymeric material is reckoned to be highly nonlinear, even at room temperature, an accurate constitutive model is a preliminary step for confident fatigue design.The injection molding process induces a complex fiber orientation distribution (FOD), which affects both the mechanical response and the fatigue life of SGFR thermoplastics. This paper presents an extension of the constitutive behavior proposed by the authors in a previous work [Launay et al., Int J Plasticity, 2011], in order to take into account the influence of the local FOD on overall anisotropic elastic and viscoplastic properties. The proposed model is written in a general 3D anisotropic framework, and is validated on tensile samples with various FOD and loading histories: monotonic tensions, creep and/or relaxation steps, cyclic loadings. In Part II of this paper [Launay et al., Int J Fatigue, 2012], this constitutive model will be applied to the simulation of different fatigue samples subjected to multiaxial cyclic loadings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.