Infectious salmon anemia (ISA) is one of the main infectious diseases in Atlantic salmon farming with major economical implications. Despite the strong regulatory interventions, the ISA epidemic is not under control, worldwide. We study the data covering salmon farming in Norway from 2002 to 2005 and propose a stochastic space-time model for the transmission of the virus. We model seaway transmission between farm sites, transmission through shared management and infrastructure, biomass effects and other potential pathways within the farming industry. We find that biomass has an effect on infectiousness, the local contact network and seaway distance of 5 km represent similar risks, but a large component of risk originates from other sources, among which are possibly infected salmon smolt and boat traffic.
Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models.
Objective: To investigate item non-response in a postal food-frequency questionnaire (FFQ), and to assess the effect of substituting/imputing missing values on dietary intake levels in the Norwegian Women and Cancer study (NOWAC). We have adapted and probably for the first time applied k nearest neighbours (KNN) imputation to FFQ data. Design: Data from a recent reproducibility study were used. The FFQ was mailed twice (test-retest) about 3 months apart to the same subjects. Missing responses in the test FFQ were imputed using the null value (frequencies 5 null, amount 5 smallest), the sample mode, the sample median, KNN, and retest values. Setting: A methodological substudy of NOWAC, a national population-based cohort. Subjects: A random sample of 2000 women aged 46-75 years was drawn from the cohort in 2002 (response 75%). The imputation methods were compared for 1430 women who completed at least 50% of the test FFQ. Results: We imputed 16% missing values in the overall test data matrix. Compared to null value imputation, the largest differences in estimated dietary intake were seen for KNN, and for food items with a high proportion of missing. Imputation with retest values increased total energy intake, indicating that not all missing values are caused by respondents failing to specify no consumption, and that null value imputation may lead to underestimation and misclassification. Conclusion: Missing values in FFQs present a methodological challenge. We encourage the application and evaluation of newer imputation methods, including KNN, which may reduce imputation errors and give more accurate intake estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.