Item response theory (IRT) is a framework for modeling and analyzing item response data. Item-level modeling gives IRT advantages over classical test theory. The fit of an item score pattern to an item response theory (IRT) models is a necessary condition that must be assessed for further use of item and models that best fit the data. The study investigated item level diagnostic statistics and model-data fit with one-and two-parameter models using IRTPROV3.0 and BILOG-MG V3.0. Ex-post facto design was adopted. The population for the study consisted of 11,538 candidates' responses who took Type L 2014 Unified Tertiary Matriculation Examination (UTME) Mathematics paper in Akwa Ibom State, Nigeria. The sample of 5,192(45%) responses was randomly selected through stratified sampling technique. BILOG-MG V3.0 and IRTPROV3.0 computer software was used to calibrate the candidates' responses. Two research questions were raised to guide the study. Pearson's χ 2 and S -χ 2 statistics as an item fit index for dichotomous item response theory models were used. The outputs from the two computer software were used to answer the questions. The findings revealed that only 1 item fitted 1-parameter model in BILOG-MG V3.0 and IRTPRO V3.0. Furthermore, the findings revealed that 26 items fitted 2-parameter models when using BILOG-MG V3.0. Five items fitted 2-parameter models in IRTPRO. It was recommended that the use of more than one IRT software programme offers more useful information for the choice of model that fit the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.