Bees are important plant pollinators in agricultural and natural ecosystems. High average annual losses of honey bee (Apis mellifera) colonies in some parts of the world, and regional population declines of some mining bee species (Andrena spp.), are attributed to multiple factors including habitat loss, lack of quality forage, insecticide exposure, and pathogens, including viruses. While research has primarily focused on viruses in honey bees, many of these viruses have a broad host range. It is therefore important to apply a community level approach in studying the epidemiology of bee viruses. We utilized high-throughput sequencing to evaluate viral diversity and viral sharing in sympatric, co-foraging bees in the context of habitat type. Variants of four common viruses (i.e., black queen cell virus, deformed wing virus, Lake Sinai virus 2, and Lake Sinai virus NE) were identified in honey bee and mining bee samples, and the high degree of nucleotide identity in the virus consensus sequences obtained from both taxa indicates virus sharing. We discovered a unique bipartite + ssRNA Tombo-like virus, Andrena-associated bee virus-1 (AnBV-1). AnBV-1 infects mining bees, honey bees, and primary honey bee pupal cells maintained in culture. AnBV-1 prevalence and abundance was greater in mining bees than in honey bees. Statistical modeling that examined the roles of ecological factors, including floral diversity and abundance, indicated that AnBV-1 infection prevalence in honey bees was greater in habitats with low floral diversity and abundance, and that interspecific virus transmission is strongly modulated by the floral community in the habitat. These results suggest that land management strategies that aim to enhance floral diversity and abundance may reduce AnBV-1 spread between co-foraging bees.
Insectivorous bats may play a significant role in regulating populations of agricultural pests. Currently, few methods are available to enhance the activity of bats in agroecosystems. We asked whether synthetic sex pheromones, used in integrated pest management (IPM) to impede the mating success of major moth pests in vineyards and apple orchards, could also enhance the activity and richness of insectivorous bats, their natural enemies. We hypothesized that applying concentrated sex pheromones of pest moths will alter the movement patterns of male moths, indirectly affecting bat richness and activity. We compared the effect of sex pheromones on bats under two different agricultural management systems: conventional farming and IPM. We used synthetic sex pheromones of Lobesia botrana or Cydia pomonella; both are among the most destructive moth pests in vineyards and apple orchards, respectively. Using passive acoustic monitoring, we compared species richness and bat activity in plots without and with additional pheromones. In both IPM vineyards and IPM apple orchards, total bat activity and species richness significantly increased after applying the pheromone treatment, with a positive correlation between total bat activity and the numbers of moth pests in the vineyards. In conventional vineyards, bat species richness increased significantly, but not total bat activity. IPM vineyards had significantly higher species richness than conventional vineyards, both before and after the pheromone treatment. Our study shows that moth pheromone lures, commonly used as a pest control method, may also attract insectivorous bats, which in turn may further suppress the pests. These findings highlight the potential of insectivorous bats as pest control agents and call for further research directed at integrating them in IPM practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.