Background Most US health care providers have adopted electronic health records (EHRs) that facilitate the uniform collection of clinical information. However, standardized data formats to capture social and behavioral determinants of health (SBDH) in structured EHR fields are still evolving and not adopted widely. Consequently, at the point of care, SBDH data are often documented within unstructured EHR fields that require time-consuming and subjective methods to retrieve. Meanwhile, collecting SBDH data using traditional surveys on a large sample of patients is infeasible for health care providers attempting to rapidly incorporate SBDH data in their population health management efforts. A potential approach to facilitate targeted SBDH data collection is applying information extraction methods to EHR data to prescreen the population for identification of immediate social needs. Objective Our aim was to examine the availability and characteristics of SBDH data captured in the EHR of a multilevel academic health care system that provides both inpatient and outpatient care to patients with varying SBDH across Maryland. Methods We measured the availability of selected patient-level SBDH in both structured and unstructured EHR data. We assessed various SBDH including demographics, preferred language, alcohol use, smoking status, social connection and/or isolation, housing issues, financial resource strains, and availability of a home address. EHR’s structured data were represented by information collected between January 2003 and June 2018 from 5,401,324 patients. EHR’s unstructured data represented information captured for 1,188,202 patients between July 2016 and May 2018 (a shorter time frame because of limited availability of consistent unstructured data). We used text-mining techniques to extract a subset of SBDH factors from EHR’s unstructured data. Results We identified a valid address or zip code for 5.2 million (95.00%) of approximately 5.4 million patients. Ethnicity was captured for 2.7 million (50.00%), whereas race was documented for 4.9 million (90.00%) and a preferred language for 2.7 million (49.00%) patients. Information regarding alcohol use and smoking status was coded for 490,348 (9.08%) and 1,728,749 (32.01%) patients, respectively. Using the International Classification of Diseases–10th Revision diagnoses codes, we identified 35,171 (0.65%) patients with information related to social connection/isolation, 10,433 (0.19%) patients with housing issues, and 3543 (0.07%) patients with income/financial resource strain. Of approximately 1.2 million unique patients with unstructured data, 30,893 (2.60%) had at least one clinical note containing phrases referring to social connection/isolation, 35,646 (3.00%) included housing issues, and 11,882 (1.00%) had mentions of financial resource strain. Conclusions Apart from demographics, SBDH data are not regularly collected for patients. Health care providers should assess the availability and characteristics of SBDH data in EHRs. Evaluating the quality of SBDH data can potentially enable health care providers to modify underlying workflows to improve the documentation, collection, and extraction of SBDH data from EHRs.
BACKGROUND Most US health care providers have adopted electronic health records (EHRs) that facilitate the uniform collection of clinical information. However, standardized data formats to capture social and behavioral determinants of health (SBDH) in structured EHR fields are still evolving and not adopted widely. Consequently, at the point of care, SBDH data are often documented within unstructured EHR fields that require time-consuming and subjective methods to retrieve. Meanwhile, collecting SBDH data using traditional surveys on a large sample of patients is infeasible for health care providers attempting to rapidly incorporate SBDH data in their population health management efforts. A potential approach to facilitate targeted SBDH data collection is applying information extraction methods to EHR data to prescreen the population for identification of immediate social needs. OBJECTIVE Our aim was to examine the availability and characteristics of SBDH data captured in the EHR of a multilevel academic health care system that provides both inpatient and outpatient care to patients with varying SBDH across Maryland. METHODS We measured the availability of selected patient-level SBDH in both structured and unstructured EHR data. We assessed various SBDH including demographics, preferred language, alcohol use, smoking status, social connection and/or isolation, housing issues, financial resource strains, and availability of a home address. EHR’s structured data were represented by information collected between January 2003 and June 2018 from 5,401,324 patients. EHR’s unstructured data represented information captured for 1,188,202 patients between July 2016 and May 2018 (a shorter time frame because of limited availability of consistent unstructured data). We used text-mining techniques to extract a subset of SBDH factors from EHR’s unstructured data. RESULTS We identified a valid address or zip code for 5.2 million (95.00%) of approximately 5.4 million patients. Ethnicity was captured for 2.7 million (50.00%), whereas race was documented for 4.9 million (90.00%) and a preferred language for 2.7 million (49.00%) patients. Information regarding alcohol use and smoking status was coded for 490,348 (9.08%) and 1,728,749 (32.01%) patients, respectively. Using the International Classification of Diseases–10th Revision diagnoses codes, we identified 35,171 (0.65%) patients with information related to social connection/isolation, 10,433 (0.19%) patients with housing issues, and 3543 (0.07%) patients with income/financial resource strain. Of approximately 1.2 million unique patients with unstructured data, 30,893 (2.60%) had at least one clinical note containing phrases referring to social connection/isolation, 35,646 (3.00%) included housing issues, and 11,882 (1.00%) had mentions of financial resource strain. CONCLUSIONS Apart from demographics, SBDH data are not regularly collected for patients. Health care providers should assess the availability and characteristics of SBDH data in EHRs. Evaluating the quality of SBDH data can potentially enable health care providers to modify underlying workflows to improve the documentation, collection, and extraction of SBDH data from EHRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.